The Hausdorff dimension of elliptic and elliptic-caloric measure in

Author:
Caroline Sweezy

Journal:
Proc. Amer. Math. Soc. **121** (1994), 787-793

MSC:
Primary 35J25; Secondary 30C85, 31A15, 35K20

MathSciNet review:
1186138

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of an *L*-caloric measure with parabolic Hausdorff dimension in is demonstrated. The method is to use a specially constructed quasi-disk *Q* whose boundary has Hausdorff . There is an elliptic measure supported on the entire boundary of *Q*. Then the *L*-caloric measure on is compared with the corresponding elliptic measure. The same method gives the existence of an elliptic measure in whose support has Hausdorff for , and an *L*-caloric measure in supported on a set of parabolic Hausdorff dimension .

**[1]**D. G. Aronson,*Non-negative solutions of linear parabolic equations*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 607–694. MR**0435594****[2]**L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa,*Boundary behavior of nonnegative solutions of elliptic operators in divergence form*, Indiana Univ. Math. J.**30**(1981), no. 4, 621–640. MR**620271**, 10.1512/iumj.1981.30.30049**[3]**Eugene B. Fabes, Nicola Garofalo, and Sandro Salsa,*A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations*, Illinois J. Math.**30**(1986), no. 4, 536–565. MR**857210****[4]**David S. Jerison and Carlos E. Kenig,*Boundary behavior of harmonic functions in nontangentially accessible domains*, Adv. in Math.**46**(1982), no. 1, 80–147. MR**676988**, 10.1016/0001-8708(82)90055-X**[5]**Peter W. Jones and Thomas H. Wolff,*Hausdorff dimension of harmonic measures in the plane*, Acta Math.**161**(1988), no. 1-2, 131–144. MR**962097**, 10.1007/BF02392296**[6]**J. M. Marstrand,*The dimension of Cartesian product sets*, Proc. Cambridge Philos. Soc.**50**(1954), 198–202. MR**0060571****[7]**Sandro Salsa,*Some properties of nonnegative solutions of parabolic differential operators*, Ann. Mat. Pura Appl. (4)**128**(1981), 193–206 (English, with Italian summary). MR**640782**, 10.1007/BF01789473**[8]**Caroline Sweezy,*The Hausdorff dimension of elliptic measure—a counterexample to the Oksendahl conjecture in 𝑅²*, Proc. Amer. Math. Soc.**116**(1992), no. 2, 361–368. MR**1161401**, 10.1090/S0002-9939-1992-1161401-5**[9]**S. J. Taylor and N. A. Watson,*A Hausdorff measure classification of polar sets for the heat equation*, Math. Proc. Cambridge Philos. Soc.**97**(1985), no. 2, 325–344. MR**771826**, 10.1017/S0305004100062873

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J25,
30C85,
31A15,
35K20

Retrieve articles in all journals with MSC: 35J25, 30C85, 31A15, 35K20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1186138-X

Keywords:
*L*-caloric measure,
parabolic Hausdorff dimension,
NTA domains

Article copyright:
© Copyright 1994
American Mathematical Society