Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Betti numbers of Alexandrov spaces


Author: Liang-Khoon Koh
Journal: Proc. Amer. Math. Soc. 122 (1994), 247-252
MSC: Primary 53C23; Secondary 53C20
DOI: https://doi.org/10.1090/S0002-9939-1994-1195481-X
MathSciNet review: 1195481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a uniform bound on the sum of Betti numbers for a class of complete Alexandrov spaces with narrow ends.


References [Enhancements On Off] (What's this?)

  • [1] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 475–502. MR 925724
  • [2] Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. MR 630949, https://doi.org/10.1007/BF02566208
  • [3] -, Structures métriques pour les variétés Riemanniennes, Cedic Fernand-Nathan, Paris, 1981.
  • [4] Z. Liu and Z. Shen, On the Betti numbers of Alexandrov spaces, preprint.
  • [5] G. Perelman, Alexandrov's spaces with curvature bounded from below, II, preprint.
  • [6] Ji-Ping Sha and DaGang Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. 29 (1989), no. 1, 95–103. MR 978078
  • [7] Ji-Ping Sha and DaGang Yang, Positive Ricci curvature on the connected sums of 𝑆ⁿ×𝑆^{𝑚}, J. Differential Geom. 33 (1991), no. 1, 127–137. MR 1085137
  • [8] Z. Shen, Finite topological type and vanishing theorems for Riemannian manifolds, Ph.D. Thesis, SUNY Stony Brook.
  • [9] M. Gromov, Y. Burago, and G. Perelman, Alexandrov's spaces with curvature bounded from below, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C23, 53C20

Retrieve articles in all journals with MSC: 53C23, 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1195481-X
Keywords: Betti number, critical point
Article copyright: © Copyright 1994 American Mathematical Society