Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An example of a quantum group: the twisted $ {\rm Sp}\sb q(2)$


Author: A. Paolucci
Journal: Proc. Amer. Math. Soc. 122 (1994), 1-6
MSC: Primary 17B37; Secondary 81R50
DOI: https://doi.org/10.1090/S0002-9939-1994-1196167-8
MathSciNet review: 1196167
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the structure of the quantum symplectic group $ \operatorname{Sp}(2)$ and give an explicit form for the fundamental representation. We prove that this group is a deformation of the classical compact group $ \operatorname{Sp}(2)$ by showing that it is equivalent to the Reshetikhin, Takhtajan, Faddeev quantum $ \operatorname{Sp}(2)$.


References [Enhancements On Off] (What's this?)

  • [1] V. G. Drinfeld, Quantum groups, Proc. Internat. Congr. Math., Berkeley, 1986, pp. 798-820. MR 934283 (89f:17017)
  • [2] M. Jimbo, Introduction to the Yang-Baxter equation, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), Adv. Ser. Math. Phys., vol. 9, World Scientific, Singapore, 1989, pp. 111-134. MR 1062425
  • [3] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665. MR 901157 (88m:46079)
  • [4] S. Majid, Quasi triangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), 1-91. MR 1027945 (90k:16008)
  • [5] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantification of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), 178-206. (Russian) MR 1015339 (90j:17039)
  • [6] J. M. Vallin, $ {C^ \ast }$-algèbre de Hopf et $ {C^ \ast }$-algèbre de Kac, Proc. London Math. Soc. (3) 50 (1985), 131-174. MR 765372 (86f:46072)
  • [7] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $ {C^ \ast }$-algèbres, version préliminaire.
  • [8] V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ, 1974. MR 0348781 (50:1276)
  • [9] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantum groups, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), Adv. Ser. Math. Phys., vol. 9, World Scientific, Singapore, 1989, pp. 97-110. MR 1062424
  • [10] S. L. Woronowicz, Twisted $ {\text{SU}}(2)$ group. An example of a non commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. MR 890482 (88h:46130)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B37, 81R50

Retrieve articles in all journals with MSC: 17B37, 81R50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1196167-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society