Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Coalgebras over the higher rank symplectic groups


Author: Anna Maria Paolucci
Journal: Proc. Amer. Math. Soc. 122 (1994), 371-381
MSC: Primary 17B35; Secondary 16W30, 46L60
DOI: https://doi.org/10.1090/S0002-9939-1994-1201298-X
MathSciNet review: 1201298
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In these notes we generalize the construction obtained for the deformation of the symplectic group $ \operatorname{Sp}(2)$ to the case of any N even: $ N = 2k$. We characterize the bialgebras $ {A_q}({\operatorname{Sp}}(k))$ by generators and relations. We consider the deformation of the algebra of polynomials on the group $ {\operatorname{Sp}}(k):{\operatorname{Pol}}({\operatorname{Sp}_q}(k))$ is a $ {\operatorname{Hopf}^ \ast }$-algebra and we build $ ^ \ast $-representations of it by means of a Verma module construction.


References [Enhancements On Off] (What's this?)

  • [1] V. G. Drinfeld, Quantum groups, Proc. ICM Berkeley, 1986, pp. 798-820. MR 934283 (89f:17017)
  • [2] M. Jimbo, Introduction to the Yang-Baxter equation, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), Adv. Ser. Math. Phys., vol. 9, World Sci. Publishing, Singapore, 1989, pp. 111-134. MR 1062425
  • [3] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665. MR 901157 (88m:46079)
  • [4] S. Majid, Quasi triangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), 1-91. MR 1027945 (90k:16008)
  • [5] A. Paolucci, A new example of quantum groups, Ph.D. Thesis, University of Iowa, Iowa City, 1992.
  • [6] -, An example of a quantum group: twisted $ {\operatorname{Sp}_q}(2)$, Proc. Amer. Math. Soc. (to appear).
  • [7] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantification of Lie groups and Lie algebras, Algebra i Analiz. 1 (1989), 178-206. (Russian) MR 1015339 (90j:17039)
  • [8] J. M. Vallin, $ {C^ \ast }$-algèbra de Hopf et $ {C^ \ast }$-algèbre de Kac, Proc. London Math. Soc. (3) 50 (1985), 131-174. MR 765372 (86f:46072)
  • [9] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $ {C^ \ast }$-algèbres, version préliminaire.
  • [10] V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ, 1974. MR 0348781 (50:1276)
  • [11] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantum groups, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), Adv. Ser. Math. Phys., vol. 9, World Sci. Publishing, Singapore, 1989, pp. 97-110. MR 1062424
  • [12] S. L. Woronowicz, Twisted $ {\text{SU}}(2)$ group. An example of a non commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. MR 890482 (88h:46130)
  • [13] -, Tannaka-Krein duality for compact matrix pseudogroups. Twisted $ {\text{SU}}(N)$ groups, Invent. Math. 93 (1988), 35-76. MR 943923 (90e:22033)
  • [14] H. T. Koelink, On $ ^ \ast $-representations of the Hopf-algebra associated with the quantum group $ {U_q}(N)$, Compositio Math. 77 (1991), 199-231. MR 1091898 (92b:16080)
  • [15] A. W. Knapp, Representation theory of semisimple groups, Princeton Univ. Press, Princeton, NJ, 1986. MR 855239 (87j:22022)
  • [16] G. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. MR 506890 (81b:16001)
  • [17] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., no. 9, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B35, 16W30, 46L60

Retrieve articles in all journals with MSC: 17B35, 16W30, 46L60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1201298-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society