Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Values of $ L$-functions at the critical point


Author: Liem Mai
Journal: Proc. Amer. Math. Soc. 122 (1994), 415-428
MSC: Primary 11F67; Secondary 11M41
DOI: https://doi.org/10.1090/S0002-9939-1994-1227525-0
MathSciNet review: 1227525
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a discriminant D of a binary quadratic form, we study the average value of $ L(s,{\varepsilon _D})$ at the critical point $ \frac{1}{2}$ where $ {\varepsilon _D}$ is defined by W. Kohnen and D. Zagier:

$\displaystyle {\varepsilon _D}(n) = \sum\limits_{\begin{array}{*{20}{c}} {g > 0... ...^2}) = 1} \\ \end{array} } {\left( {\frac{{{D_0}}}{{{g^{ - 2}}n}}} \right)} \,g$

for $ n \in \mathbb{N}$ and $ D = {D_0}{\delta ^2},{D_0}$ a fundamental discriminant and $ \delta \in \mathbb{N}$. When $ D = {D_0},L(s,{\varepsilon _{{D_0}}})$ is the Dirichlet series $ L(s,(\frac{{{D_0}}}{ \cdot }))$. We derive an asymptotic formula for $ \sum\nolimits_D {L(\frac{1}{2},{\varepsilon _D})} $, where the sum runs over all discriminants $ D \in (0,Y]$ or $ [ - Y,0)$.

References [Enhancements On Off] (What's this?)

  • [1] H. Davenport, Multiplicative number theory, second ed., Springer-Verlag, New York, 1980. MR 606931 (82m:10001)
  • [2] D. Goldfeld and J. Hoffstein, Eisenstein series of $ \frac{1}{2}$-integral weight and the mean value of real Dirichlet L-series, Invent. Math. 80 (1985), 185-205. MR 788407 (86m:11029)
  • [3] D. Goldfeld and C. Viola, Mean values of L-functions associated to Elliptic, Fermat and other curves at the center of the critical strip, J. Number Theory 11 (1979), 305-320. MR 544259 (80j:10046)
  • [4] M. Jutila, On the mean value of $ L(\frac{1}{2},\chi )$ for real characters, Analysis 1 (1981), 149-161. MR 632705 (82m:10065)
  • [5] W. Konnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 175-198. MR 629468 (83b:10029)
  • [6] M. R. Murty and V. K. Murty, A variant of the Bombieri-Vinogradov Theorem, CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 243-272. MR 894326 (88h:11087)
  • [7] -, Mean values of derivatives of modular L-series, Ann. of Math. (2) 133 (1991), 447-475. MR 1109350 (92e:11050)
  • [8] C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2) 45 (1944), 667-685. MR 0012642 (7:51a)
  • [9] A. I. Vinogradov and L. A. Tahtadzjan. On analogues of the Vinogradov-Gauss formula, Soviet Math. Dokl. 22 (1980), 555-559.
  • [10] D. Zagier, Modular forms whose Fourier coefficients involve Zeta functions of quadratic fields, Modular Forms of One Variable VI (J. P. Serre and D. Zagier, eds.), Lecture Notes in Math., vol. 627, Springer-Verlag, New York, 1977, pp. 105-169. MR 0485703 (58:5525)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F67, 11M41

Retrieve articles in all journals with MSC: 11F67, 11M41


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1227525-0
Keywords: L-functions, discriminants
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society