Fast spectrally-accurate solution of variable-coefficient elliptic problems

Author:
John Strain

Journal:
Proc. Amer. Math. Soc. **122** (1994), 843-850

MSC:
Primary 65N35

DOI:
https://doi.org/10.1090/S0002-9939-1994-1216825-6

MathSciNet review:
1216825

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple, efficient, spectrally-accurate numerical method for solving variable-coefficient elliptic partial differential equations in periodic geometry is described. Numerical results show that the method is efficient and accurate even for difficult problems including convection-diffusion equations. Generalizations and applications to phase field models of crystal growth are discussed.

**[1]**W. L. Briggs,*A multigrid tutorial*, SIAM, Philadelphia, PA, 1987. MR**960880 (89j:65001)****[2]**G. Caginalp,*Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations*, Phys. Rev. A**39**(1989), 5887-5896. MR**998924 (90c:80004)****[3]**C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,*Spectral methods in fluid dynamics*, Springer-Verlag, New York, 1987. MR**917480 (89m:76004)****[4]**P. Concus and G. H. Golub,*Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations*, SIAM J. Numer. Anal.**10**(1973), 1103-1120. MR**0341890 (49:6636)****[5]**M. Deville and E. Mund,*Chebyshev pseudo-spectral solution of second-order elliptic equations with finite element preconditioning*, J. Comput. Phys.**60**(1985), 517-533. MR**814440 (87b:65197)****[6]**R. Freund and N. M. Nachtigal,*QMR*:*a quasi-minimal residual method for non-Hermitian linear systems*, Numer. Math.**60**(1991), 315-339. MR**1137197 (92g:65034)****[7]**D. Gilbarg and N. S. Trudinger (eds.),*Elliptic partial differential equations of second order*, Springer-Verlag, New York, 1983. MR**737190 (86c:35035)****[8]**H. Guillard and J. A. Désidéri,*Iterative methods with spectral preconditioning for elliptic equations*, Spectral and High Order Methods for Partial Differential Equations: Proceedings of the ICOSAHOM '89 Conference (Villa Olmo, Como, Italy, June 26-29, 1989) (C. Canuto and A. Quarteroni, eds.), Elsevier, Amsterdam, 1990.**[9]**E. Hairer, S. P. Nørsett, and G. Wanner,*Solving ordinary differential equations*II:*Stiff problems*, Springer-Verlag, New York, 1991. MR**1111480 (92a:65016)****[10]**W. Proskurowski and O. Widlund,*On the numerical solution of Helmholtz's equation by the capacitance matrix method*, Math. Comp.**32**(1978), 103-120.**[11]**V. Rokhlin,*Application of volume integrals to the solution of partial differential equations*, Comput. Math. Appl., vol. 11, Academic Press, London, 1985, pp. 667-679. MR**809600 (86k:65119)****[12]**-,*Rapid solution of integral equations of scattering theory in two dimensions*, J. Comput. Phys.**86**(1990), 414-439. MR**1036660 (90k:76081)****[13]**Y. Saad and M. R. Schultz, GMRES:*A generalized minimum residual method for solving nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**7**(1986), 856-869. MR**848568 (87g:65064)****[14]**H. A van der Vorst, BI-CGSTAB:*a fast and smoothly converging variant of*BI-CG*for the solution of nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**13**(1992), 631-644. MR**1149111 (92j:65048)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
65N35

Retrieve articles in all journals with MSC: 65N35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1216825-6

Keywords:
Elliptic solvers,
preconditioning,
spectral methods

Article copyright:
© Copyright 1994
American Mathematical Society