Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fast spectrally-accurate solution of variable-coefficient elliptic problems


Author: John Strain
Journal: Proc. Amer. Math. Soc. 122 (1994), 843-850
MSC: Primary 65N35
DOI: https://doi.org/10.1090/S0002-9939-1994-1216825-6
MathSciNet review: 1216825
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple, efficient, spectrally-accurate numerical method for solving variable-coefficient elliptic partial differential equations in periodic geometry is described. Numerical results show that the method is efficient and accurate even for difficult problems including convection-diffusion equations. Generalizations and applications to phase field models of crystal growth are discussed.


References [Enhancements On Off] (What's this?)

  • [1] W. L. Briggs, A multigrid tutorial, SIAM, Philadelphia, PA, 1987. MR 960880 (89j:65001)
  • [2] G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A 39 (1989), 5887-5896. MR 998924 (90c:80004)
  • [3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, New York, 1987. MR 917480 (89m:76004)
  • [4] P. Concus and G. H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations, SIAM J. Numer. Anal. 10 (1973), 1103-1120. MR 0341890 (49:6636)
  • [5] M. Deville and E. Mund, Chebyshev pseudo-spectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys. 60 (1985), 517-533. MR 814440 (87b:65197)
  • [6] R. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991), 315-339. MR 1137197 (92g:65034)
  • [7] D. Gilbarg and N. S. Trudinger (eds.), Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983. MR 737190 (86c:35035)
  • [8] H. Guillard and J. A. Désidéri, Iterative methods with spectral preconditioning for elliptic equations, Spectral and High Order Methods for Partial Differential Equations: Proceedings of the ICOSAHOM '89 Conference (Villa Olmo, Como, Italy, June 26-29, 1989) (C. Canuto and A. Quarteroni, eds.), Elsevier, Amsterdam, 1990.
  • [9] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations II: Stiff problems, Springer-Verlag, New York, 1991. MR 1111480 (92a:65016)
  • [10] W. Proskurowski and O. Widlund, On the numerical solution of Helmholtz's equation by the capacitance matrix method, Math. Comp. 32 (1978), 103-120.
  • [11] V. Rokhlin, Application of volume integrals to the solution of partial differential equations, Comput. Math. Appl., vol. 11, Academic Press, London, 1985, pp. 667-679. MR 809600 (86k:65119)
  • [12] -, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86 (1990), 414-439. MR 1036660 (90k:76081)
  • [13] Y. Saad and M. R. Schultz, GMRES: A generalized minimum residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), 856-869. MR 848568 (87g:65064)
  • [14] H. A van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992), 631-644. MR 1149111 (92j:65048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65N35

Retrieve articles in all journals with MSC: 65N35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1216825-6
Keywords: Elliptic solvers, preconditioning, spectral methods
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society