Fast spectrally-accurate solution of variable-coefficient elliptic problems

Author:
John Strain

Journal:
Proc. Amer. Math. Soc. **122** (1994), 843-850

MSC:
Primary 65N35

MathSciNet review:
1216825

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple, efficient, spectrally-accurate numerical method for solving variable-coefficient elliptic partial differential equations in periodic geometry is described. Numerical results show that the method is efficient and accurate even for difficult problems including convection-diffusion equations. Generalizations and applications to phase field models of crystal growth are discussed.

**[1]**William L. Briggs,*A multigrid tutorial*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR**960880****[2]**G. Caginalp,*Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations*, Phys. Rev. A (3)**39**(1989), no. 11, 5887–5896. MR**998924**, 10.1103/PhysRevA.39.5887**[3]**Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang,*Spectral methods in fluid dynamics*, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR**917480****[4]**Paul Concus and Gene H. Golub,*Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations*, SIAM J. Numer. Anal.**10**(1973), 1103–1120. MR**0341890****[5]**M. Deville and E. Mund,*Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning*, J. Comput. Phys.**60**(1985), no. 3, 517–533. MR**814440**, 10.1016/0021-9991(85)90034-8**[6]**Roland W. Freund and Noël M. Nachtigal,*QMR: a quasi-minimal residual method for non-Hermitian linear systems*, Numer. Math.**60**(1991), no. 3, 315–339. MR**1137197**, 10.1007/BF01385726**[7]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[8]**H. Guillard and J. A. Désidéri,*Iterative methods with spectral preconditioning for elliptic equations*, Spectral and High Order Methods for Partial Differential Equations: Proceedings of the ICOSAHOM '89 Conference (Villa Olmo, Como, Italy, June 26-29, 1989) (C. Canuto and A. Quarteroni, eds.), Elsevier, Amsterdam, 1990.**[9]**E. Hairer and G. Wanner,*Solving ordinary differential equations. II*, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR**1111480****[10]**W. Proskurowski and O. Widlund,*On the numerical solution of Helmholtz's equation by the capacitance matrix method*, Math. Comp.**32**(1978), 103-120.**[11]**Vladimir Rokhlin,*Application of volume integrals to the solution of partial differential equations*, Comput. Math. Appl.**11**(1985), no. 7-8, 667–679. Computational ocean acoustics (New Haven, Conn., 1984). MR**809600**, 10.1016/0898-1221(85)90163-4**[12]**V. Rokhlin,*Rapid solution of integral equations of scattering theory in two dimensions*, J. Comput. Phys.**86**(1990), no. 2, 414–439. MR**1036660**, 10.1016/0021-9991(90)90107-C**[13]**Youcef Saad and Martin H. Schultz,*GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 3, 856–869. MR**848568**, 10.1137/0907058**[14]**H. A. van der Vorst,*Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**13**(1992), no. 2, 631–644. MR**1149111**, 10.1137/0913035

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
65N35

Retrieve articles in all journals with MSC: 65N35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1216825-6

Keywords:
Elliptic solvers,
preconditioning,
spectral methods

Article copyright:
© Copyright 1994
American Mathematical Society