Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups


Authors: Sriwulan Adji, Marcelo Laca, May Nilsen and Iain Raeburn
Journal: Proc. Amer. Math. Soc. 122 (1994), 1133-1141
MSC: Primary 46L55; Secondary 46L05, 47B35, 47D03
DOI: https://doi.org/10.1090/S0002-9939-1994-1215024-1
MathSciNet review: 1215024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\Gamma ^ + }$ be the positive cone in a totally ordered abelian group $ \Gamma $. We construct crossed products by actions of $ {\Gamma ^ + }$ as endomorphisms of $ {C^ \ast }$-algebras, and give criteria which ensure a given representation of the crossed product is faithful. We use this to prove that the $ {C^\ast}$-algebras generated by two semigroups V, $ W:{\Gamma ^ + } \to B(H)$ of nonunitary isometries are canonically isomorphic, thus giving a new, self-contained proof of a theorem of Murphy, which includes earlier results of Coburn and Douglas.


References [Enhancements On Off] (What's this?)

  • [1] S. Boyd, N. Keswani, and I. Raeburn, Faithful representations of crossed products by endomorphisms, Proc. Amer. Math. Soc. 118 (1993), 427-436. MR 1126190 (93g:46066)
  • [2] O. Bratteli, Inductive limits of finite-dimensional $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. MR 0312282 (47:844)
  • [3] L. A. Coburn, The $ {C^\ast}$-algebra generated by an isometry I, Bull. Amer. Math. Soc. 73 (1967), 722-726. MR 0213906 (35:4760)
  • [4] J. Cuntz, Simple $ {C^\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • [5] R. G. Douglas, On the $ {C^\ast}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), 143-152. MR 0394296 (52:15099)
  • [6] G. J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), 303-326. MR 915512 (89f:46132)
  • [7] -, Ordered groups and crossed products of $ {C^\ast}$-algebras, Pacific J. Math. 148 (1991), 319-349. MR 1094493 (92j:46119)
  • [8] W. L. Paschke, The crossed product by an endomorphism, Proc. Amer. Math. Soc. 80 (1980), 113-118. MR 574518 (81m:46081)
  • [9] G. K. Pedersen, $ {C^\ast}$-algebras and their automorphism groups, Academic Press, London and New York, 1979. MR 548006 (81e:46037)
  • [10] I. Raeburn, On crossed products and Takai duality, Proc. Edinburgh Math. Soc. (2) 31 (1988), 321-330. MR 989764 (90d:46093)
  • [11] P. J. Stacey, Crossed products of $ {C^\ast}$-algebras by endomorphisms, J. Austral. Math. Soc. Ser. A 54 (1993), 204-212. MR 1200792 (94a:46077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46L05, 47B35, 47D03

Retrieve articles in all journals with MSC: 46L55, 46L05, 47B35, 47D03


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1215024-1
Keywords: $ {C^ \ast }$-algebra, endomorphism, ordered group, covariant representation, crossed product, semigroup of isometries, Toeplitz algebra
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society