Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the depth of the associated graded ring


Author: Anna Guerrieri
Journal: Proc. Amer. Math. Soc. 123 (1995), 11-20
MSC: Primary 13A30; Secondary 13C15, 13H10
DOI: https://doi.org/10.1090/S0002-9939-1995-1211580-9
MathSciNet review: 1211580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let (R, m) be a Cohen-Macaulay local ring of positive dimension d, let I be an $ m - $ primary ideal of R. In this paper we individuate some conditions on I that allow us to determine a lower bound for depth $ {\text{gr}_I}(R)$. It is proved that if $ J \subseteq I$ is a minimal reduction of I such that $ \lambda ({I^2} \cap J/IJ) = 2$ and $ {I^n} \cap J = {I^{n - 1}}J$ for all $ n \geq 3$, then depth $ {\text{gr}_I}(R) \geq d - 2$; let us remark that $ \lambda $ denotes the length function.


References [Enhancements On Off] (What's this?)

  • [G] A. Guerrieri, On the depth of the associated graded ring of an $ m - $ primary ideal of a Cohen-Macaulay local ring, J. Algebra (to appear). MR 1287068 (95h:13004)
  • [Hu] S. Huckaba, Reduction numbers for ideals of higher analytic spread, Math. Proc. Cambridge Philos. Soc. 102 (1987), 49-57. MR 886434 (89b:13023)
  • [H] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318. MR 894879 (89b:13037)
  • [K] I. Kaplansky, R-sequences and homological dimension, Nagoya Math. J. (1962), 195-199. MR 0175955 (31:231)
  • [M] T. Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal, J. London Math. Soc. (2) 40 (1989), 1-8. MR 1028910 (90m:13026)
  • [Mat] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, London and New York, 1990. MR 879273 (88h:13001)
  • [NR] D. G. Northcott and D. Rees, Reduction of ideals in local rings, Math. Proc. Cambridge Philos. Soc. 50 (1954), 145-158. MR 0059889 (15:596a)
  • [S1] J. Sally, Reductions, local cohomology and Hilbert functions of local rings, Commutative Algebra (Durham 1981), London Math. Soc. Lecture Notes Ser., vol. 72, Cambridge Univ. Press, London, 1982, pp. 231-241. MR 693638 (84g:13037)
  • [S2] -, Hilbert coefficients and reduction number 2, J. Algebraic Geom. 1 (1992), 325-333. MR 1144442 (93b:13026)
  • [S3] -, Ideals whose Hilbert function and Hilbert polynomial agree at $ n = 1$, preprint.
  • [S4] -, Numbers of generators of ideals in local rings, Lecture Notes in Pure and Appl. Math., vol. 35, Marcel Dekker, New York, 1978. MR 0485852 (58:5654)
  • [T] N. V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), 229-236. MR 902533 (89i:13031)
  • [V] G. Valla, On form rings that are Cohen-Macaulay, J. Algebra 58 (1979), 247-250. MR 540637 (80h:13025)
  • [VV] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93-101. MR 514892 (80d:14010)
  • [Vas] W. V. Vasconcelos, Hilbert functions, analytic spread and Koszul homology, Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 401-422. MR 1266195 (95a:13006)
  • [W] Y. Wu, Reduction number and Hilbert polynomials of ideals in higher dimensional CM local rings, Math. Proc. Cambridge Philos. Soc. 111 (1992), 47. MR 1131477 (92g:13020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A30, 13C15, 13H10

Retrieve articles in all journals with MSC: 13A30, 13C15, 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1211580-9
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society