Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isomorphisms between groups of diffeomorphisms


Author: Tomasz Rybicki
Journal: Proc. Amer. Math. Soc. 123 (1995), 303-310
MSC: Primary 58D05; Secondary 17B66, 22E65, 57R50
DOI: https://doi.org/10.1090/S0002-9939-1995-1233982-7
MathSciNet review: 1233982
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the group of all diffeomorphisms of a manifold determines uniquely the topological and smooth structure of the manifold itself. We specify a possibly large class of diffeomorphism groups which satisfy this property. In particular, so does the group of contact diffeomorphisms.


References [Enhancements On Off] (What's this?)

  • [1] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227. MR 490874 (80c:58005)
  • [2] -, On isomorphic classical diffeomorphism groups. I, Proc. Amer. Math. Soc. 98 (1985), 113-118. MR 848887 (87m:58027)
  • [3] -, On isomorphic classical diffeomorphism groups. II, J. Differential Geom. 28 (1988), 23-35. MR 950553 (89h:58032)
  • [4] A. Banyaga, R. de la Llave, and C. E. Wayne, Cohomology equations and commutators of germs of contact diffeomorphisms, Trans. Amer. Math. Soc. 312 (1989), 755-778. MR 935530 (89k:58080)
  • [5] R. P. Filipkiewicz, Isomorphism between diffeomorphism groups, Ergodic Theory Dynamical Systems 2 (1982), 159-171. MR 693972 (84j:58039)
  • [6] J. Gray, Some global properties of contact structures, Ann. of Math. (2) 69 (1959), 421-450. MR 0112161 (22:3016)
  • [7] A. Koriyama, Y. Maeda, and H. Omori, On Lie algebras of vector fields, Trans. Amer. Math. Soc. 226 (1977), 89-119. MR 0431196 (55:4198)
  • [8] J. Mather, Commutators of diffeomorphisms. I, II, Comment. Math. Helv. 49 (1974), 512-558; 50 (1975), 33-40. MR 0356129 (50:8600)
  • [9] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Math., vol. 427, Springer-Verlag, New York, 1974. MR 0431262 (55:4263)
  • [10] J. Palis and S. Smale, Structural stability theorems, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, RI, 1970, pp. 223-231. MR 0267603 (42:2505)
  • [11] L. E. Pursell and M. E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc. 5 (1954), 468-472. MR 0064764 (16:331a)
  • [12] T. Rybicki, On nontransitive groups of diffeomorphisms, preprint.
  • [13] F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms, Bol. Soc. Brasil Math. 10 (1979), 17-25. MR 552032 (82e:58027)
  • [14] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307. MR 0339267 (49:4027)
  • [15] J. V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math. (2) 78 (1963), 74-91. MR 0150750 (27:737)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58D05, 17B66, 22E65, 57R50

Retrieve articles in all journals with MSC: 58D05, 17B66, 22E65, 57R50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1233982-7
Keywords: Automorphism of geometric structure, group of diffeomorphisms, isomorphism of groups, contact structure, Erlangen Program
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society