Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on distribution of zeros of solutions of linear differential equations


Author: Jian Hua Zheng
Journal: Proc. Amer. Math. Soc. 123 (1995), 847-854
MSC: Primary 34A20; Secondary 30C15
DOI: https://doi.org/10.1090/S0002-9939-1995-1233976-1
MathSciNet review: 1233976
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this paper is to prove a sharp estimate of the order $ \rho (w)$ of a transcendental solution w in the complex plane of an n th-order linear differential equation with polynomial coefficients in terms of the distribution of its Stokes rays, under the assumption that zero is not a Nevanlinna deficient value of w. If, in addition, there are only two Stokes rays and if all the solutions of the equation have order at most $ \rho (w)$, then we can conclude that the coefficients of the equation are all constants.


References [Enhancements On Off] (What's this?)

  • [1] S. B. Bank and I. Laine, On the oscillation theory of $ f'' + Af = 0$ where A is entire, Trans. Amer. Math. Soc. 273 (1982), 351-363. MR 664047 (83k:34009)
  • [2] S. B. Bank, G. Frank, and I. Laine, Über die Nullstellen von Lösungen linearer Differentialgleichungen, Math. Z. 183 (1983), 355-364. MR 706393 (85j:34054)
  • [3] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), 1-35. MR 967787 (89m:30001)
  • [4] F. Brüggemann, On the zeros of fundamental systems of linear differential equations with polynomial coefficients, Complex Variables 15 (1990), 159-166. MR 1074058 (91j:34009)
  • [5] -, On solutions of linear differential equations with real zeros; Proof of a conjecture of Hellerstein and Rossi, Proc. Amer. Math. Soc. 113 (1991), 371-379. MR 1057941 (91m:34007)
  • [6] V. Dietrich, Über die annahme der möglichen wachstumsordnungen und typen bei linearen differentialgleichungen, Habilitationsschrift, RWTH, Aachen, 1989.
  • [7] G. Frank, Picardsche ausnahmewerte bei Lösungen linear differentialgleichungen, Manuscripta Math. 2 (1970), 181-190. MR 0264160 (41:8756)
  • [8] S. Gao and J. K. Langley, On the zeros of certain linear differential polynomials, J. Math. Anal. Appl. 53 (1990), 159-178. MR 1080124 (91m:30040)
  • [9] A. A. Gol'dberg and I. V. Ostrovskii, Theory of distribution of the values of meromorphic functions, Nauka, Moscow, 1970. (Russian) MR 0280720 (43:6439)
  • [10] G. G. Gundersen, On the real zeros of solutions of $ f'' + A(z)f = 0$ where $ A(z)$ is entire, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 11 (1986), 275-294. MR 853961 (87j:34013)
  • [11] E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1972. MR 0499382 (58:17266)
  • [12] R. B. Paris and A. D. Wood, Asymptotics of high order differential equations, Wiley, New York, 1986. MR 866315 (87k:34091)
  • [13] N. Steinmetz, Exceptional values of solutions of linear differential equations, Math. Z. 201 (1989), 317-326. MR 999730 (90i:30044)
  • [14] -, Linear differential equations with exceptional fundamental sets, Analysis 11 (1991), 119-127. MR 1143628 (92m:34014)
  • [15] H. Wittich, Zur kennzeichnung linearer differentialgleichungen mit konstanten koeffizienten, Festband zum 70, Geburtstag von Rolf Nevanlinna (H. P. Künzi and A. Pfluger, eds.), Springer-Verlag, Berlin, 1966. MR 0229886 (37:5452)
  • [16] -, Bemerkung zur Zerlegung linearer differentialoperataren mit ganzen koeffizienten, Math. Nachr. 39 (1969), 363-372. MR 0248370 (40:1622)
  • [17] G. H. Zhang, Theory of meromorphic and entire functions, Science Press, Beijing, 1986. (Chinese)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A20, 30C15

Retrieve articles in all journals with MSC: 34A20, 30C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1233976-1
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society