On the Minkowski measurability of fractals

Author:
K. J. Falconer

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1115-1124

MSC:
Primary 28A80

DOI:
https://doi.org/10.1090/S0002-9939-1995-1224615-4

MathSciNet review:
1224615

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note addresses two aspects of Minkowski measurability. First we present a short "dynamical systems" proof of the characterization of Minkowski measurable compact subsets of . Second, we use a renewal theory argument to point out that "most" self-similar fractals are Minkowski measurable and calculate their Minkowski content.

**[1]**Tim Bedford,*Applications of dynamical systems theory to fractals—a study of cookie-cutter Cantor sets*, Fractal geometry and analysis (Montreal, PQ, 1989) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 346, Kluwer Acad. Publ., Dordrecht, 1991, pp. 1–44. MR**1140719**, https://doi.org/10.1098/rspa.1975.0163**[2]**M. V. Berry,*Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 13–28. MR**573427****[3]**K. J. Falconer,*Fractal geometry--Mathematical foundations and applications*, Wiley, Chichester, 1990.**[4]**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[5]**Steven P. Lalley,*The packing and covering functions of some self-similar fractals*, Indiana Univ. Math. J.**37**(1988), no. 3, 699–710. MR**962930**, https://doi.org/10.1512/iumj.1988.37.37034**[6]**Steven P. Lalley,*Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits*, Acta Math.**163**(1989), no. 1-2, 1–55. MR**1007619**, https://doi.org/10.1007/BF02392732**[7]**Steven P. Lalley,*Probabilistic methods in certain counting problems of ergodic theory*, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 223–258. MR**1130178****[8]**Jun Kigami and Michel L. Lapidus,*Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals*, Comm. Math. Phys.**158**(1993), no. 1, 93–125. MR**1243717****[9]**Michel L. Lapidus,*Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture*, Trans. Amer. Math. Soc.**325**(1991), no. 2, 465–529. MR**994168**, https://doi.org/10.1090/S0002-9947-1991-0994168-5**[10]**M. L. Lapidus,*Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture*, Ordinary and partial differential equations, Vol. IV (Dundee, 1992) Pitman Res. Notes Math. Ser., vol. 289, Longman Sci. Tech., Harlow, 1993, pp. 126–209. MR**1234502****[11]**M. L. Lapidus and H. Maier,*The Riemann hypothesis, inverse spectral problem for vibrating fractal strings and the modified Weyl-Berry conjecture*, J. London Math. Soc. (to appear).**[12]**Michel L. Lapidus and Carl Pomerance,*Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals*, C. R. Acad. Sci. Paris Sér. I Math.**310**(1990), no. 6, 343–348 (French, with English summary). MR**1046509****[13]**Michel L. Lapidus and Carl Pomerance,*The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums*, Proc. London Math. Soc. (3)**66**(1993), no. 1, 41–69. MR**1189091**, https://doi.org/10.1112/plms/s3-66.1.41**[14]**David Ruelle,*Repellers for real analytic maps*, Ergodic Theory Dynamical Systems**2**(1982), no. 1, 99–107. MR**684247**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A80

Retrieve articles in all journals with MSC: 28A80

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1224615-4

Article copyright:
© Copyright 1995
American Mathematical Society