Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of quasinormable Köthe sequence spaces


Author: M. Ángeles Miñarro
Journal: Proc. Amer. Math. Soc. 123 (1995), 1207-1212
MSC: Primary 46A04; Secondary 46A11, 46A45, 46B25, 46M20, 47B07
DOI: https://doi.org/10.1090/S0002-9939-1995-1227526-3
MathSciNet review: 1227526
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let E be a quasinormable Fréchet space. We prove that every quotient map $ q:E \to X$ with X Banach lifts bounded sets. Moreover, we show that this property characterizes the quasinormability of E in case that E is a Köthe sequence space of order p, $ 1 \leq p < \infty $ or $ p = 0$.


References [Enhancements On Off] (What's this?)

  • [1] K. D. Bierstedt, R. Meise, and W. Summers, Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Application Theory, North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam, 1982, pp. 27-91. MR 691159 (84f:46011)
  • [2] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (1991), 301-304. MR 1127750 (92k:46004)
  • [3] J. Bonet and J. C. Díaz, Subspaces and quotients spaces without the density condition, Monatsh. Math. (1994) (to appear).
  • [4] J. Bonet and S. Dierolf, On the lifting of bounded sets, Proc. Edinburgh Math. Soc. 36 (1993), 277-281. MR 1221048 (94c:46006)
  • [5] J. Bonet, M. Maestre, G. Metafune, V. B. Moscatelli, and D. Vogt, Every quojection is the quotient of a countable product of Banach spaces, Advances in the Theory of Frećhet Spaces, Kluwer, Dordrecht, 1989, pp. 355-356. MR 1083576 (91m:46012)
  • [6] M. De Wilde, Sur le relevement des parties bornées d'un quotient d'espaces vectoriels topologiques, Bull. Soc. Roy. Sci. Liège 43 (1974), 299-301. MR 0355513 (50:7987)
  • [7] J. C. Díaz, Montel subspaces in the countable projective limits of $ {L_p}(\mu )$-spaces, Canad. Math. Bull. 32 (1989), 169-176. MR 1006742 (90k:46011)
  • [8] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math., vol. 92, Springer, New York, Berlin, Heidelberg, and Tokyo, 1984. MR 737004 (85i:46020)
  • [9] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57-123. MR 0075542 (17:765b)
  • [10] -, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., vol. 16, Amer. Math. Soc., Providence, RI, 1955. MR 0075539 (17:763c)
  • [11] H. Jarchow, Locally convex spaces, Teubner-Stuttgart, Leipzig, 1981. MR 632257 (83h:46008)
  • [12] G. Köthe, Topological vector spaces. I, Springer-Verlag, Heidelberg, 1969.
  • [13] R. Meise and D. Vogt, A characterization of the quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. MR 871197 (88e:46002)
  • [14] P. Pérez Carreras and J. Bonet, Barreled locally convex spaces, North-Holland Math. Stud., vol. 131, North-Holland, Amsterdam, 1987. MR 880207 (88j:46003)
  • [15] W. Roelcke and S. Dierolf, On the three-space problem for topological vector spaces, Collect. Math. 32 (1981), 3-25. MR 643398 (84f:46006)
  • [16] D. Vogt, On the functor $ \operatorname{Ext}^1(E,F)$ for Fréchet spaces, Studia Math. 85 (1987), 163-197. MR 887320 (89a:46146)
  • [17] -, On two problems of Mityagin, Math. Nachr. 141 (1989), 13-25. MR 1014410 (90h:46018)
  • [18] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichen Typ, Studia Math. 70 (1981), 63-80. MR 646960 (83e:46011)
  • [19] L. Weis, Über schwach folgenpräkompakte Operatoren, Arch. Math. 30 (1978), 411-417. MR 0636122 (58:30423)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A04, 46A11, 46A45, 46B25, 46M20, 47B07

Retrieve articles in all journals with MSC: 46A04, 46A11, 46A45, 46B25, 46M20, 47B07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1227526-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society