Operators with complex Gaussian kernels: boundedness properties

Author:
E. R. Negrín

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1185-1190

MSC:
Primary 47G10; Secondary 47B38

MathSciNet review:
1227527

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Boundedness properties are stated for some operators from into , with complex Gaussian kernels. Their contraction properties are also analysed.

**[1]**John C. Baez, Irving E. Segal, and Zheng-Fang Zhou,*Introduction to algebraic and constructive quantum field theory*, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1992. MR**1178936****[2]**Jay B. Epperson,*The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel*, J. Funct. Anal.**87**(1989), no. 1, 1–30. MR**1025881**, 10.1016/0022-1236(89)90002-5**[3]**Gerald B. Folland,*Harmonic analysis in phase space*, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR**983366****[4]**Roger Howe,*The oscillator semigroup*, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132. MR**974332**, 10.1090/pspum/048/974332**[5]**Elliott H. Lieb,*Gaussian kernels have only Gaussian maximizers*, Invent. Math.**102**(1990), no. 1, 179–208. MR**1069246**, 10.1007/BF01233426**[6]**Fred B. Weissler,*Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup*, J. Funct. Anal.**32**(1979), no. 1, 102–121. MR**533222**, 10.1016/0022-1236(79)90080-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47G10,
47B38

Retrieve articles in all journals with MSC: 47G10, 47B38

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1227527-5

Keywords:
Lebesgue measure,
bounded operator,
contraction,
Gaussian kernels

Article copyright:
© Copyright 1995
American Mathematical Society