Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A congruence for primes


Author: Zhi Wei Sun
Journal: Proc. Amer. Math. Soc. 123 (1995), 1341-1346
MSC: Primary 11A07; Secondary 11B68
MathSciNet review: 1242105
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With the help of the Pell sequence we obtain the following new congruence for odd primes:

$\displaystyle \sum\limits_{k = 1}^{(p - 1)/2} {\frac{1}{{k \cdot {2^k}}} \equiv \sum\limits_{k = 1}^{[3p/4]} {\;\frac{{{{( - 1)}^{k - 1}}}}{k}} \quad \pmod p.} $


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11A07, 11B68

Retrieve articles in all journals with MSC: 11A07, 11B68


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1242105-X
PII: S 0002-9939(1995)1242105-X
Article copyright: © Copyright 1995 American Mathematical Society