Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Theorem of Kuratowski-Suslin for measurable mappings


Author: Andrzej Wiśniewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 1475-1479
MSC: Primary 28A20
DOI: https://doi.org/10.1090/S0002-9939-1995-1283566-X
MathSciNet review: 1283566
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to describe these Borel mappings on a separable complete metric space X which transform every measurable set (with respect to some measure $ \mu $ on X) onto a measurable one. It is shown that a one-to-one Borel mapping f on X fulfills the above property if and only if the measure $ \mu $ is absolutely continuous with respect to the measure $ {\mu _f}$ (an image of $ \mu $ under the mapping f). Our results are a generalization of the classical results of Suslin and Kuratowski.


References [Enhancements On Off] (What's this?)

  • [1] S. D. Chatterji, Singularity and absolute continuity of measures in infinite dimensional spaces, Lecture Notes in Math., vol. 656, Springer-Verlag, Berlin, Heidelberg, and New York, 1978, pp. 17-23. MR 521017 (80d:60054)
  • [2] S. D. Chatterji and V. Mandrekar, Quasi-invariance of measures under translation, Math. Z. 154 (1977), 19-29. MR 0443066 (56:1439)
  • [3] R. Engelking, General topology, PWN, Warszawa, 1977. MR 0500780 (58:18316b)
  • [4] K. Kuratowski, Topology I, Academic Press, New York, and PWN, Warszawa, 1966. MR 0217751 (36:840)
  • [5] I. P. Natanson, Theorie der Funktionen einer reellen Veranderlichen, Akademie-Verlag, Berlin, 1954. MR 0063424 (16:120a)
  • [6] K. R. Parthasarathy, Introduction to probability and measure, Mc-Millan Co. of India, Delhi, 1980. MR 0651012 (58:31322a)
  • [7] G. E. Silov and Fan Dyk Tin, Integral, measure and derivative in linear spaces, Nauka, Moscow, 1967. MR 0219686 (36:2765)
  • [8] A. V. Skorohod, Integration in Hilbert spaces, Springer-Verlag, Berlin, Heidelberg, and New York, 1974. MR 0466482 (57:6360)
  • [9] M. Suslin, Sur une definition des ensembles mesurables B sans nombres transfinis, C. R. Acad. Sci. Paris 164 (1917), 89.
  • [10] J. Zinn, Admissible translates of stable measures, Studia Math. 54 (1976), 245-257. MR 0400376 (53:4210)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A20

Retrieve articles in all journals with MSC: 28A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1283566-X
Keywords: Borel sets, measurable and nonmeasurable sets, Borel mappings, measurable mappings, absolute continuity of measures, admissible translations of measures
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society