Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Nonnegative solutions of the radial Laplacian with nonlinearity that changes sign

Authors: N. P. Cac, A. M. Fink and J. A. Gatica
Journal: Proc. Amer. Math. Soc. 123 (1995), 1393-1398
MSC: Primary 34B15; Secondary 35B05, 35J99
MathSciNet review: 1285979
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find a solution to the radial Laplacian equation $ y'' + \frac{{N - 1}}{x}y' + \lambda a(x)f(y) = 0,y' (0) = y(1) = 0$ when a may change sign and is "sufficiently positive". The function f is qualitatively like $ {e^y}$, and we conclude solutions for $ 0 \leq \lambda \leq {\lambda _0}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B15, 35B05, 35J99

Retrieve articles in all journals with MSC: 34B15, 35B05, 35J99

Additional Information

PII: S 0002-9939(1995)1285979-9
Keywords: Elliptic boundary value problem, radially symmetric solution, Green's function
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia