Portraits of frames

Author:
Akram Aldroubi

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1661-1668

MSC:
Primary 46C05; Secondary 42C15

MathSciNet review:
1242070

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce two methods for generating frames of a Hilbert space . The first method uses bounded operators on . The other method uses bounded linear operators on to generate frames of . We characterize all the mappings that transform frames into other frames. We also show how to construct all frames of a given Hilbert space , starting from any given one. We illustrate the results by giving some examples from multiresolution and wavelet theory.

**[1]**Akram Aldroubi and Michael Unser,*Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory*, Numer. Funct. Anal. Optim.**15**(1994), no. 1-2, 1–21. MR**1261594**, 10.1080/01630569408816545**[2]**-,*Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform*, Wavelets--A Tutorial in Theory and Applications, 2 (C. K. Chui, ed.), Academic Press, New York, 1992, pp. 509-528.**[3]**Akram Aldroubi and Michael Unser,*Families of multiresolution and wavelet spaces with optimal properties*, Numer. Funct. Anal. Optim.**14**(1993), no. 5-6, 417–446. MR**1248121**, 10.1080/01630569308816532**[4]**Akram Aldroubi, Murray Eden, and Michael Unser,*Discrete spline filters for multiresolutions and wavelets of 𝑙₂*, SIAM J. Math. Anal.**25**(1994), no. 5, 1412–1432. MR**1289146**, 10.1137/S0036141092234086**[5]**John J. Benedetto,*Gabor representations and wavelets*, Commutative harmonic analysis (Canton, NY, 1987) Contemp. Math., vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 9–27. MR**1002584**, 10.1090/conm/091/1002584**[6]**John J. Benedetto,*Irregular sampling and frames*, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 445–507. MR**1161260****[7]**J. J. Benedetto and S. Li,*Multiresolution analysis frames with applications*, IEEE-ICASSP**3**(1993), 304-307.**[8]**Ingrid Daubechies,*The wavelet transform, time-frequency localization and signal analysis*, IEEE Trans. Inform. Theory**36**(1990), no. 5, 961–1005. MR**1066587**, 10.1109/18.57199**[9]**Ingrid Daubechies,*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107****[10]**R. J. Duffin and A. C. Schaeffer,*A class of nonharmonic Fourier series*, Trans. Amer. Math. Soc.**72**(1952), 341–366. MR**0047179**, 10.1090/S0002-9947-1952-0047179-6**[11]**Christopher E. Heil and David F. Walnut,*Continuous and discrete wavelet transforms*, SIAM Rev.**31**(1989), no. 4, 628–666. MR**1025485**, 10.1137/1031129**[12]**Stephane G. Mallat,*Multiresolution approximations and wavelet orthonormal bases of 𝐿²(𝑅)*, Trans. Amer. Math. Soc.**315**(1989), no. 1, 69–87. MR**1008470**, 10.1090/S0002-9947-1989-1008470-5**[13]**-,*A theory of multiresolution signal decomposition*:*the wavelet representation*, IEEE Trans. Pattern Anal. Machine Intell. PAMI-11 (1989), 674-693.**[14]**Wim Sweldens and Robert Piessens,*Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions*, SIAM J. Numer. Anal.**31**(1994), no. 4, 1240–1264. MR**1286226**, 10.1137/0731065**[15]**Akram Aldroubi and Michael Unser,*Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory*, Numer. Funct. Anal. Optim.**15**(1994), no. 1-2, 1–21. MR**1261594**, 10.1080/01630569408816545**[16]**Michael Unser, Akram Aldroubi, and Murray Eden,*On the asymptotic convergence of 𝐵-spline wavelets to Gabor functions*, IEEE Trans. Inform. Theory**38**(1992), no. 2, 864–872. MR**1162223**, 10.1109/18.119742**[17]**-,*A family of polynomial spline wavelet transforms*, Signal Process.**30**(1993), 141-162.**[18]**M. Vetterli and C. Herley,*Wavelets and filter banks*, IEEE Trans. Signal Proc.**40**(1992), 2207-2231.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46C05,
42C15

Retrieve articles in all journals with MSC: 46C05, 42C15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1242070-5

Keywords:
Frames,
frame-preserving mappings,
affine frames,
multiresolution,
wavelets

Article copyright:
© Copyright 1995
American Mathematical Society