Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Portraits of frames


Author: Akram Aldroubi
Journal: Proc. Amer. Math. Soc. 123 (1995), 1661-1668
MSC: Primary 46C05; Secondary 42C15
DOI: https://doi.org/10.1090/S0002-9939-1995-1242070-5
MathSciNet review: 1242070
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce two methods for generating frames of a Hilbert space $ \mathcal{H}$. The first method uses bounded operators on $ \mathcal{H}$. The other method uses bounded linear operators on $ {l_2}$ to generate frames of $ \mathcal{H}$. We characterize all the mappings that transform frames into other frames. We also show how to construct all frames of a given Hilbert space $ \mathcal{H}$, starting from any given one. We illustrate the results by giving some examples from multiresolution and wavelet theory.


References [Enhancements On Off] (What's this?)

  • [1] A. Aldroubi and M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. Optim. 15 (1994), 1-21. MR 1261594 (95a:94002)
  • [2] -, Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform, Wavelets--A Tutorial in Theory and Applications, 2 (C. K. Chui, ed.), Academic Press, New York, 1992, pp. 509-528.
  • [3] -, Families of multiresolution and wavelet spaces with optimal properties, Numer. Funct. Anal. Optim. 14 (1993), 417-446. MR 1248121 (94j:42045)
  • [4] A. Aldroubi, M. Unser, and M. Eden, Discrete spline filters for multiresolutions and wavelets of $ {l_2}$, SIAM J. Math. Anal. 25 (1994), 1412-1432. MR 1289146 (95e:42033)
  • [5] J. Benedetto, Gabor representation and wavelets, Commut. Harmonic Anal. 19 (1989), 9-27. MR 1002584 (90h:42044)
  • [6] J. J. Benedetto, Irregular sampling and frames, Wavelets-A Tutorial in Theory and Applications, 2 (C. K. Chui, ed.), Academic Press, New York, 1992, pp. 445-507. MR 1161260 (93c:42030)
  • [7] J. J. Benedetto and S. Li, Multiresolution analysis frames with applications, IEEE-ICASSP 3 (1993), 304-307.
  • [8] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961-1005. MR 1066587 (91e:42038)
  • [9] -, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelpha, PA, 1992. MR 1162107 (93e:42045)
  • [10] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. MR 0047179 (13:839a)
  • [11] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. MR 1025485 (91c:42032)
  • [12] S. G. Mallat, Multiresolution approximations and wavelet orthogonal bases of $ {L_2}(\mathbb{R})$, Trans. Amer. Math. Soc. 315 (1989), 69-87. MR 1008470 (90e:42046)
  • [13] -, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. PAMI-11 (1989), 674-693.
  • [14] W. Sweldens and R. Piessens, Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions, SIAM J. Numer. Anal. 31 (1994), 1240-1264. MR 1286226 (95e:42043)
  • [15] M. Unser and A. Aldroubi, A general sampling theory for nonideal acquisition devices, preprint. MR 1261594 (95a:94002)
  • [16] M. Unser, A. Aldroubi, and M. Eden, On the asymptotic convergence of B-spline wavelets to Gabor functions, IEEE Trans. Inform. Theory 38 (1992), 864-872. MR 1162223 (93f:41020)
  • [17] -, A family of polynomial spline wavelet transforms, Signal Process. 30 (1993), 141-162.
  • [18] M. Vetterli and C. Herley, Wavelets and filter banks, IEEE Trans. Signal Proc. 40 (1992), 2207-2231.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46C05, 42C15

Retrieve articles in all journals with MSC: 46C05, 42C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242070-5
Keywords: Frames, frame-preserving mappings, affine frames, multiresolution, wavelets
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society