Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regular operator convergence and nonlinear equations involving numerical ranges


Author: Ram U. Verma
Journal: Proc. Amer. Math. Soc. 123 (1995), 1859-1864
MSC: Primary 47H17; Secondary 45L10, 65J15
DOI: https://doi.org/10.1090/S0002-9939-1995-1242108-5
MathSciNet review: 1242108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Regular operator approximation theory, based on the work of Anselone and Lei (1986), is generalized to the case of strongly accretive operators and applied to nonlinear equations involving the generalized Zarantonello numerical ranges


References [Enhancements On Off] (What's this?)

  • [1] P. M. Anselone, Collectively compact operator approximation theory, Prentice-Hall, Engle-wood Cliffs, NJ, 1971. MR 0443383 (56:1753)
  • [2] P. M. Anselone and R. Ansorge, Compactness principles in nonlinear operator approximation theory, Numer. Funct. Anal. Optim. 1 (1979), 589-618. MR 552242 (81a:65055)
  • [3] -, A unified framework for the discretization of nonlinear operator equations, Numer. Funct. Anal. Optim. 4 (1981), 61-99. MR 641830 (83g:65061)
  • [4] P. M. Anselone and Jin-Gan Lei, The approximate solution of monotone nonlinear operator equations, Rocky Mountain J. Math. 16 (1986), 791-801. MR 871036 (87m:47146)
  • [5] -, Nonlinear operator approximation theory based on demi-regular convergence, Acta Math. Sci. (English ed.) 6 (1986), 121-132. MR 924656 (89d:47138)
  • [6] R. Ansorge and Jin-Gan Lei, The convergence of discretization methods if applied to weakly formulated problems: Theory and examples, Z. Angew. Math. Mech. 71 (1991), 201-221. MR 1121485 (92f:65063)
  • [7] K. E. Atkinson, The numerical solution of a bifurcation problem, SIAM J. Numer. Anal. 14 (1977), 584-599. MR 0448859 (56:7164)
  • [8] R. D. Grigorieff, Über diskrete approximetionen nichtlinearer Gleichungen. I, Math. Nachr. 69 (1975), 253-272. MR 0415439 (54:3526)
  • [9] M. A. Krasnoselskii et al., Approximate solutions of operator equations, Wolters-Noordhoff, Groningen, 1972. MR 0385655 (52:6515)
  • [10] M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, MacMillan, New York, 1964. MR 0159197 (28:2414)
  • [11] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Wiley, New York, 1973. MR 0467428 (57:7286b)
  • [12] R. U. Verma, On the external approximation-solvability of nonlinear equations, Panamer. Math. J. 2 (1992), 23-42. MR 1173147 (93h:65084)
  • [13] -, Phi-stable operators and inner approximation-solvability, Proc. Amer. Math. Soc. 117 (1993), 491-499. MR 1127144 (93d:47122)
  • [14] -, General approximation-solvability of nonlinear equations involving A-regular operators, Appl. Math. Lett. 6 (1993), 31-33. MR 1347771 (96g:47064)
  • [15] -, On regular operator approximation theory, J. Math. Anal. Appl. 183 (1994), 591-604. MR 1274859 (95e:47074)
  • [16] J. R. Webb, On a property of duality mappings and the A-properness of accretive operators, Bull. London Math. Soc. 13 (1981), 235-238. MR 614661 (82f:47065)
  • [17] E. Zarantonello, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. 70 (1964), 781-787. MR 0173176 (30:3389)
  • [18] E. Zeidler, Nonlinear functional analysis and its applications II/B, Springer-Verlag, New York, 1990. MR 1033498 (91b:47002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H17, 45L10, 65J15

Retrieve articles in all journals with MSC: 47H17, 45L10, 65J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242108-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society