Triangular truncation and normal limits of nilpotent operators

Author:
Don Hadwin

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1741-1745

MSC:
Primary 47A58; Secondary 15A60, 47A30, 47A65

MathSciNet review:
1257109

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, as , the product of the norm of the triangular truncation map on the complex matrices with the distance from the norm-one hermitian matrices to the nilpotents converges to 1/2. We also include an elementary proof of D. Herrero's characterization of the normal operators that are norm limits of nilpotents.

**[ACN]**James R. Angelos, Carl C. Cowen, and Sivaram K. Narayan,*Triangular truncation and finding the norm of a Hadamard multiplier*, Linear Algebra Appl.**170**(1992), 117–135. MR**1160957**, 10.1016/0024-3795(92)90414-6**[AFHV]**Constantin Apostol, Lawrence A. Fialkow, Domingo A. Herrero, and Dan Voiculescu,*Approximation of Hilbert space operators. Vol. II*, Research Notes in Mathematics, vol. 102, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**735080****[AFV]**Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu,*On the norm-closure of nilpotents. II*, Rev. Roumaine Math. Pures Appl.**19**(1974), 549–557. MR**0417828****[D]**Kenneth R. Davidson,*Nest algebras*, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR**972978****[H1]**Domingo A. Herrero,*Normal limits of nilpotent operators*, Indiana Univ. Math. J.**23**(1973/74), 1097–1108. MR**0350476****[H2]**-,*Approximation of Hilbert space operators*. I, Research Notes in Math., vol. 72, Pitman, Boston, 1982.**[K]**W. Kahan,*Every 𝑛×𝑛 matrix 𝑍 with real spectrum satisfies \Vert𝑍-𝑍*\Vert≤\Vert𝑍+𝑍*\Vert(log₂𝑛+0.038)*, Proc. Amer. Math. Soc.**39**(1973), 235–241. MR**0313278**, 10.1090/S0002-9939-1973-0313278-3**[KP]**S. Kwapień and A. Pełczyński,*The main triangle projection in matrix spaces and its applications.*, Studia Math.**34**(1970), 43–68. MR**0270118**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A58,
15A60,
47A30,
47A65

Retrieve articles in all journals with MSC: 47A58, 15A60, 47A30, 47A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1257109-0

Article copyright:
© Copyright 1995
American Mathematical Society