Triangular truncation and normal limits of nilpotent operators

Author:
Don Hadwin

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1741-1745

MSC:
Primary 47A58; Secondary 15A60, 47A30, 47A65

DOI:
https://doi.org/10.1090/S0002-9939-1995-1257109-0

MathSciNet review:
1257109

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, as , the product of the norm of the triangular truncation map on the complex matrices with the distance from the norm-one hermitian matrices to the nilpotents converges to 1/2. We also include an elementary proof of D. Herrero's characterization of the normal operators that are norm limits of nilpotents.

**[ACN]**J. R. Angelos, C. C. Cowen, and S. K. Narayan,*Triangular truncation and finding the norm of a Hadamard multiplier*, Linear Algebra Appl.**170**(1992), 117-135. MR**1160957 (93d:15039)****[AFHV]**C. Apostol, L. Fialkow, D. Herrero, and D. Voiculescu,*Approximation of Hilbert space operators*, Vol. II, Pitman, Boston, 1984. MR**735080 (85m:47002)****[AFV]**C. Apostol, C. Foias, and D. Voiculescu,*Norm limits of nilpotents*, II, Rev. Roumaine Math. Pures Appl.**19**(1974), 549-577. MR**0417828 (54:5876)****[D]**K. Davidson,*Nest algebras*, Pitman Res. Notes Math. Ser., no. 191, Longman Sci. Tech., Harlow, 1988. MR**972978 (90f:47062)****[H1]**D. A. Herrero,*Normal limits of nilpotents operators*, Indiana Univ. Math. J.**23**(1974), 1097-1108. MR**0350476 (50:2968)****[H2]**-,*Approximation of Hilbert space operators*. I, Research Notes in Math., vol. 72, Pitman, Boston, 1982.**[K]**W. Kahan,*Every**matrix Z with real spectrum satisfies*, Proc. Amer. Math. Soc.**39**(1973), 235-241. MR**0313278 (47:1833)****[KP]**S. Kwapien and A. Pelczynski,*The main triangle projection in matrix spaces and its application*, Studia Math.**34**(1970), 43-68. MR**0270118 (42:5011)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A58,
15A60,
47A30,
47A65

Retrieve articles in all journals with MSC: 47A58, 15A60, 47A30, 47A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1257109-0

Article copyright:
© Copyright 1995
American Mathematical Society