Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reflexivity of tensor products of linear transformations


Authors: Wing Suet Li and Elizabeth Strouse
Journal: Proc. Amer. Math. Soc. 123 (1995), 2021-2029
MSC: Primary 47A15; Secondary 47A80, 47D99
DOI: https://doi.org/10.1090/S0002-9939-1995-1215202-2
MathSciNet review: 1215202
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A and B be linear transformations on finite-dimensional Hilbert space. We characterize the reflexivity of $ A \otimes B$ in terms of certain characteristics of A and B.


References [Enhancements On Off] (What's this?)

  • [1] A. C. Aitken, The normal form of compound and induced matrices, Proc. London Math. Soc. 38 (1934), 354-376.
  • [2] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. MR 0188786 (32:6218)
  • [3] R. A. Brualdi, Combinatorial verification of the elementary divisors of tensor products, Linear Algebra Appl. 71 (1985), 31-47. MR 813031 (87c:15021)
  • [4] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 1 (1975), 89-93. MR 0358390 (50:10856)
  • [5] D. Larson and W. R. Wogen, Reflexivity properties of $ T \oplus 0$, J. Funct. Anal. 92 (1990), 448-467. MR 1069253 (91i:47010)
  • [6] D. E. Littlewood, On induced and compound matrices, Proc. London Math. Soc. 40 (1936), 370-380.
  • [7] M. Marcus and H. Robinson, Elementary divisors of tensor products, Comm. ACM 18 (1975), 36-39. MR 0364316 (51:571)
  • [8] W. E. Roth, On direct product matrices, Bull. Amer. Math. Soc. 40 (1934), 461-468. MR 1562881

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47A80, 47D99

Retrieve articles in all journals with MSC: 47A15, 47A80, 47D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1215202-2
Keywords: Tensor product, reflexivity
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society