Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Four-point affine Lie algebras


Author: Murray Bremner
Journal: Proc. Amer. Math. Soc. 123 (1995), 1981-1989
MSC: Primary 17B67; Secondary 33C45, 33C50
DOI: https://doi.org/10.1090/S0002-9939-1995-1249871-8
MathSciNet review: 1249871
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider Lie algebras of the form $ \mathfrak{g} \otimes R$ where $ \mathfrak{g}$ is a simple complex Lie algebra and $ R = \mathbb{C}[s,{s^{ - 1}},{(s - 1)^{ - 1}},{(s - a)^{ - 1}}]$ for $ a \in \mathbb{C} - \{ 0,1\} $. After showing that R is isomorphic to a quadratic extension of the ring $ \mathbb{C}[t,{t^{ - 1}}]$ of Laurent polynomials, we prove that $ g \otimes R$ is a quasi-graded Lie algebra with a triangular decomposition. We determine the universal central extension of $ \mathfrak{g} \otimes R$ and show that the cocycles defining it are closely related to ultraspherical (Gegenbauer) polynomials.


References [Enhancements On Off] (What's this?)

  • [B] M. Bremner, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable, Canad. Math. Bull. 37 (1994), 21-28. MR 1261553 (95d:17025)
  • [CHG] The Buenos Aires Cyclic Homology Group, Cyclic homology of monogenic algebras, preprint.
  • [Kac] V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge Univ. Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [Kas] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra 34 (1984), 265-275. MR 772062 (86h:17013)
  • [KL] C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32 (1982), 119-142. MR 694130 (85g:17004)
  • [KLu1] D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, Internat. Math. Res. Notes 2 (1991), 21-29. MR 1104840 (92g:17015)
  • [KLu2] -, Tensor structures arising from affine Lie algebras, I and II, preprint.
  • [KN] I. M. Krichever and S. P. Novikov, Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons, Funct. Anal. Appl. 21 (1987), 126-142.
  • [LL] M. Larsen and A. Lindenstrauss, Cyclic homology of Dedekind domains, K-Theory 6 (1992), 301-334. MR 1193147 (93k:19003)
  • [MP] R. Moody and A. Pianzola, Lie algebras with triangular decomposition, Wiley, New York (to appear). MR 1323858 (96d:17025)
  • [Sc] M. Schlichenmaier, Krichever-Novikov algebras for more than two points, Lett. Math. Phys. 19 (1990), 151-165. MR 1039524 (91a:17039)
  • [Sh1] O. Sheinman, Elliptic affine Lie algebras, Funct. Anal. Appl. 24 (1990), 210-219. MR 1082031 (93i:17027)
  • [Sh2] -, Highest weight modules over certain quasigraded Lie algebras on elliptic curves, Funct. Anal. Appl. 26 (1992), 203-208. MR 1189025 (93j:17051)
  • [Sz] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc., Providence, RI, 1975.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B67, 33C45, 33C50

Retrieve articles in all journals with MSC: 17B67, 33C45, 33C50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1249871-8
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society