Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A right inverse of the Askey-Wilson operator


Authors: B. Malcolm Brown and Mourad E. H. Ismail
Journal: Proc. Amer. Math. Soc. 123 (1995), 2071-2079
MSC: Primary 33D20; Secondary 33D45, 39A70, 42C10, 45E10
DOI: https://doi.org/10.1090/S0002-9939-1995-1273478-X
MathSciNet review: 1273478
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an integral representation of a right inverse of the Askey-Wilson finite difference operator on $ {L^2}$ with weight $ {(1 - {x^2})^{ - 1/2}}$. The kernel of this integral operator is $ \vartheta _4'/\vartheta_4$ and is the Riemann mapping function that maps the interior of an ellipse conformally onto the open unit disc.


References [Enhancements On Off] (What's this?)

  • [1] R. Askey and M. E. H. Ismail, A generalization of ultraspherical polynomials, Studies in Pure Mathematics (P. Erdös, ed.), Birkhauser, Basel, 1983, pp. 55-78. MR 820210 (87a:33015)
  • [2] R. Askey and J. Wilson, Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., Number 319, Amer. Math. Soc., Providence, RI, 1985. MR 783216 (87a:05023)
  • [3] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, Cambridge, 1990. MR 1052153 (91d:33034)
  • [4] M. E. H. Ismail, The zeros of basic Bessel functions, the functions $ {J_{v + ax}}(x)$, and associated orthogonal polynomials, J. Math. Anal. Appl. 82 (1982), 1-19. MR 649849 (83c:33010)
  • [5] M. E. H. Ismail and R. Zhang, Diagonalization of certain integral operators, Adv. Math. 109 (1994), 1-33. MR 1302754 (96d:39005)
  • [6] M. E. H. Ismail, M. Rahman, and R. Zhang, Diagonalization of certain integral operators II, J. Comput. Appl. Math, (to appear). MR 1418757 (98d:33011)
  • [7] A. P. Magnus, Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials, Orthogonal Polynomials and Their Applications (M. Alfaro et al., eds.), Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 261-278. MR 973434 (90d:33008)
  • [8] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 0045823 (13:640h)
  • [9] -, Introduction to complex analysis, Allyn and Bacon, Boston, MA, 1961. MR 0224779 (37:378)
  • [10] G. Szegö, Orthogonal polynomials, fourth edition, Amer. Math. Soc., Providence, RI, 1975.
  • [11] E. T. Whittaker and G. N. Watson, A course of modern analysis, second edition, Cambridge Univ. Press, Cambridge, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33D20, 33D45, 39A70, 42C10, 45E10

Retrieve articles in all journals with MSC: 33D20, 33D45, 39A70, 42C10, 45E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273478-X
Keywords: Integral operator, Chebyshev polynomials, theta functions, finite difference operators, conformal mappings, q-Hermite polynomials
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society