Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Variation of the discrete eigenvalues of normal operators

Authors: L. Elsner and S. Friedland
Journal: Proc. Amer. Math. Soc. 123 (1995), 2511-2517
MSC: Primary 47A55; Secondary 47B10, 47B15
MathSciNet review: 1257103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Hoffman-Wielandt inequality, which gives a bound for the distance between the spectra of two normal matrices, is generalized to normal operators A, B on a separable Hilbert space, such that $ A - B$ is Hilbert-Schmidt.

References [Enhancements On Off] (What's this?)

  • [Ber] I. D. Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. MR 0283610 (44:840)
  • [B-B] R. Bhatia and T. Bhattacharya, A generalization of the Hoffman-Wielandt theorem, Linear Algebra Appl. 179 (1993), 11-17. MR 1200140 (94a:47001)
  • [B-E] R. Bhatia and L. Elsner, The Hoffman-Wielandt inequality in infinite dimensions, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 483-494. MR 1314392 (95m:47028)
  • [B-S] R. Bhatia and K.B. Sinha, A unitary analogue of Kato's theorem on variation of discrete spectra, Lett. Math. Phys. 15 (1988), 201-204. MR 948353 (89h:47017)
  • [C-H] J. A. Cochran and E. W. Hinds, Improved error bounds for the eigenvalues of certain normal operators, SIAM J. Numer. Anal. 9 (1972), 446-453. MR 0324459 (48:2811)
  • [Els] L. Elsner, A note on the Hoffman-Wielandt theorem, Linear Algebra Appl. 182 (1993), 235-237. MR 1207084 (93m:15021)
  • [Fri] S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17 (1977), 15-51. MR 0472861 (57:12550)
  • [G-K] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, RI, 1968. MR 0246142 (39:7447)
  • [H-W] A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39. MR 0052379 (14:611b)
  • [Kat] T. Kato, Variation of discrete spectra, Comm. Math. Phys. 111 (1987), 501-504. MR 900507 (88g:47045)
  • [Neu] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actualités Sci. Indust., vol. 229, Hermann, Paris, 1935; reprinted in his Collected Works, Vol. IV, Pergamon Press, Oxford, 1962, pp. 38-59. MR 0157874 (28:1103)
  • [Voi] D. Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), 3-37. MR 553861 (80m:47012)
  • [Wey] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A55, 47B10, 47B15

Retrieve articles in all journals with MSC: 47A55, 47B10, 47B15

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society