-matroids and thin Schubert-type cells attached to algebraic torus actions

Author:
Yi Hu

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2607-2617

MSC:
Primary 14L30; Secondary 14M25, 52B40

MathSciNet review:
1223514

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a projective variety acted on by an algebraic torus, we introduce the notion of (**W**, **R**)-matroids using the fixed-point set **W** and the set **R** of equivalence classes of one-parameter subgroups. The (**W**, **R**)-matroids provide close links among the geometry of torus orbits and Schubert-type cells, the theory of momentum polyhedra, and the combinatorial geometries. On the way to establishing the main theme of the paper, we showed that there are only finitely many Bialynicki-Birula decompositions induced by infinitely many one-parameter subgroups.

**[A]**M. F. Atiyah,*Convexity and commuting Hamiltonians*, Bull. London Math. Soc.**14**(1982), no. 1, 1–15. MR**642416**, 10.1112/blms/14.1.1**[B-B]**A. Białynicki-Birula,*Some theorems on actions of algebraic groups*, Ann. of Math. (2)**98**(1973), 480–497. MR**0366940****[BG1]**A. Borovik and I. Gelfand,*W P-matroids and thin Schubert cells on Tits systems*, preprint, 1992.**[BG2]**-,*Matroids on chamber systems*, preprint, 1992.**[CR]**Henry H. Crapo and Gian-Carlo Rota,*On the foundations of combinatorial theory: Combinatorial geometries*, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR**0290980****[D]**V. I. Danilov,*The geometry of toric varieties*, Uspekhi Mat. Nauk**33**(1978), no. 2(200), 85–134, 247 (Russian). MR**495499****[GGMS]**I. M. Gel′fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova,*Combinatorial geometries, convex polyhedra, and Schubert cells*, Adv. in Math.**63**(1987), no. 3, 301–316. MR**877789**, 10.1016/0001-8708(87)90059-4**[GS]**I. M. Gel′fand and V. V. Serganova,*Combinatorial geometries and the strata of a torus on homogeneous compact manifolds*, Uspekhi Mat. Nauk**42**(1987), no. 2(254), 107–134, 287 (Russian). MR**898623****[GuS]**V. Guillemin and S. Sternberg,*Convexity properties of the moment mapping*, Invent. Math.**67**(1982), no. 3, 491–513. MR**664117**, 10.1007/BF01398933**[H1]**Yi Hu,*The geometry and topology of quotient varieties of torus actions*, Duke Math. J.**68**(1992), no. 1, 151–184. MR**1185821**, 10.1215/S0012-7094-92-06806-2**[H2]**Yi Hu,*On the homology of complements of arrangements of subspaces and spheres*, Proc. Amer. Math. Soc.**122**(1994), no. 1, 285–290. MR**1204377**, 10.1090/S0002-9939-1994-1204377-6**[KSZ1]**M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky,*Chow polytopes and general resultants*, Duke Math. J.**67**(1992), no. 1, 189–218. MR**1174606**, 10.1215/S0012-7094-92-06707-X**[KSZ2]**M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky,*Quotients of toric varieties*, Math. Ann.**290**(1991), no. 4, 643–655. MR**1119943**, 10.1007/BF01459264**[KL1]**David Kazhdan and George Lusztig,*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, 10.1007/BF01390031**[KL2]**David Kazhdan and George Lusztig,*Schubert varieties and Poincaré duality*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR**573434****[S]**Bernd Sturmfels,*On the matroid stratification of Grassmann varieties, specialization of coordinates, and a problem of N. White*, Adv. Math.**75**(1989), no. 2, 202–211. MR**1002208**, 10.1016/0001-8708(89)90037-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14L30,
14M25,
52B40

Retrieve articles in all journals with MSC: 14L30, 14M25, 52B40

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1223514-1

Article copyright:
© Copyright 1995
American Mathematical Society