Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the $ 2$-class groups of cyclotomic fields whose maximal real subfields have odd class numbers


Authors: Kuniaki Horie and Mitsuko Horie
Journal: Proc. Amer. Math. Soc. 123 (1995), 2643-2649
MSC: Primary 11R18; Secondary 11R29
DOI: https://doi.org/10.1090/S0002-9939-1995-1273498-5
MathSciNet review: 1273498
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper first makes a simple remark about the structure as a group of the ideal class group of any algebraic number field, then studies the 2-rank of the ideal class group of any cyclotomic field whose maximal real subfield has odd class number, and finally determines the structure of the ideal class groups of some cyclotomic fields.


References [Enhancements On Off] (What's this?)

  • [1] G. Cornell and M. I. Rosen, The l-rank of the real class group of cyclotomic fields, Compositio Math. 53 (1984), 133-141. MR 766293 (86d:11090)
  • [2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952; Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1985.
  • [3] K. Horie, On the exponents of ideal class groups of cyclotomic fields, Proc. Amer. Math. Soc. 119 (1993), 1049-1052. MR 1169030 (94a:11166)
  • [4] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. MR 0083013 (18:644d)
  • [5] E. E. Kummer, Über die Klassenzahl der aus n-ten Einheitswurzeln gebildeten complexen Zahlen, Monatsber. Akad. Wiss. Berlin (1861), 1051-1053; Collected papers, I, pp. 883-885.
  • [6] F. J. van der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), 693-707. MR 669662 (84e:12005)
  • [7] J. M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), 297-319. MR 511747 (80e:12005)
  • [8] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. MR 0429824 (55:2834)
  • [9] G. Schrutka von Rechtenstamm, Tabelle der Relativ-Klassenzahlen der Kreiskörper, deren $ \phi $-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist, Abh. Deutschen Akad. Wiss. Berlin Kl. Math. Phys. 2 (1964), 1-64. MR 0167646 (29:4918)
  • [10] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), 107-134. MR 0485778 (58:5585)
  • [11] K. Tateyama, On the ideal class groups of some cyclotomic fields, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 333-335. MR 682697 (84b:12011)
  • [12] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, Heidelberg, and Berlin, 1982. MR 718674 (85g:11001)
  • [13] K. Yoshino and M. Hirabayashi, On the relative class number of the imaginary abelian number field I, Mem. College Liberal Arts Kanazawa Medical Univ. 9 (1981), 5-53.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R18, 11R29

Retrieve articles in all journals with MSC: 11R18, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273498-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society