Duality on noncompact manifolds and complements of topological knots
Author:
Gerard A. Venema
Journal:
Proc. Amer. Math. Soc. 123 (1995), 32513262
MSC:
Primary 57M30; Secondary 55M05, 55Q05
MathSciNet review:
1307570
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the image of a topological embedding of into . In this paper the homotopy groups of the complement are studied. In contrast with the situation in the smooth and piecewiselinear categories, it is shown that the first nonstandard homotopy group of the complement of such a topological knot can occur in any dimension in the range 1 through . If the first nonstandard homotopy group of the complement occurs above the middle dimension, then the end of must have a nontrivial homotopy group in the dual dimension. The complement has the proper homotopy type of if both the complement and the end of the complement have standard homotopy groups in every dimension below the middle dimension. A new form of duality for noncompact manifolds is developed. The duality theorem is the main technical tool used in the paper.
 [1]
Steve
Ferry, Homotoping 𝜖maps to homeomorphisms, Amer. J.
Math. 101 (1979), no. 3, 567–582. MR 533191
(81f:57007a), http://dx.doi.org/10.2307/2373798
 [2]
Michael
Hartley Freedman, The topology of fourdimensional manifolds,
J. Differential Geom. 17 (1982), no. 3,
357–453. MR
679066 (84b:57006)
 [3]
Michael
H. Freedman and Frank
Quinn, Topology of 4manifolds, Princeton Mathematical Series,
vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
(94b:57021)
 [4]
Craig
R. Guilbault, An open collar theorem for
4manifolds, Trans. Amer. Math. Soc.
331 (1992), no. 1,
227–245. MR 1038016
(92g:57030), http://dx.doi.org/10.1090/S00029947199210380167
 [5]
J.
G. Hollingsworth and T.
B. Rushing, Homotopy characterizations of weakly flat codimension
2\ spheres, Amer. J. Math. 98 (1976), no. 2,
385–394. MR 0420631
(54 #8644)
 [6]
Akio
Kawauchi, A partial Poincaré duality theorem for infinite
cyclic coverings, Quart. J. Math. Oxford Ser. (2) 26
(1975), no. 104, 437–458. MR 0394691
(52 #15490)
 [7]
M.
Kervaire and C.
Weber, A survey of multidimensional knots, Knot theory (Proc.
Sem., PlanssurBex, 1977) Lecture Notes in Math., vol. 685,
Springer, Berlin, 1978, pp. 61–134. MR 521731
(80f:57009)
 [8]
Vo
Thanh Liem and Gerard
A. Venema, Characterization of knot complements in the
4sphere, Topology Appl. 42 (1991), no. 3,
231–245. MR 1137949
(92k:57045), http://dx.doi.org/10.1016/01668641(91)901245
 [9]
Vo
Thanh Liem and Gerard
A. Venema, On the asphericity of knot complements, Canad. J.
Math. 45 (1993), no. 2, 340–356. MR 1208119
(93m:57027), http://dx.doi.org/10.4153/CJM19930165
 [10]
J.
Levine, Unknotting spheres in codimension two, Topology
4 (1965), 9–16. MR 0179803
(31 #4045)
 [11]
D.
R. McMillan Jr., A criterion for cellularity in a manifold,
Ann. of Math. (2) 79 (1964), 327–337. MR 0161320
(28 #4528)
 [12]
John
W. Milnor, Infinite cyclic coverings, Conference on the
Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967)
Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133.
MR
0242163 (39 #3497)
 [13]
D.
W. Sumners, Homotopy torsion in codimension two
knots, Proc. Amer. Math. Soc. 24 (1970), 229–240. MR 0253316
(40 #6531), http://dx.doi.org/10.1090/S00029939197002533167
 [1]
 S. C. Ferry, Homotoping maps to homeomorphisms, Amer. J. Math. 101 (1979), 567582. MR 533191 (81f:57007a)
 [2]
 M. H. Freedman, The topology of fourdimensional manifolds, J. Differential Geom. 17 (1982), 357453. MR 679066 (84b:57006)
 [3]
 M. H. Freedman and F. Quinn, Topology of 4manifolds, Princeton Univ. Press, Princeton, NJ, 1990. MR 1201584 (94b:57021)
 [4]
 C. Guilbault, An open collar theorem for 4manifolds, Trans. Amer. Math. Soc. 331 (1992), 227245. MR 1038016 (92g:57030)
 [5]
 J. G. Hollingsworth and T. B. Rushing, Homotopy characterization of weakly flat codimension 2 spheres, Amer. J. Math. 98 (1976), 385394. MR 0420631 (54:8644)
 [6]
 A. Kawauchi, A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. Oxford Ser. (2) 26 (1975), 437458. MR 0394691 (52:15490)
 [7]
 M. Kervaire and C. Weber, A survey of multidimensional knots, Knot Theory (J. C. Hausmann, ed.), SpringerVerlag, New York and Berlin, 1978, pp. 61134. MR 521731 (80f:57009)
 [8]
 V. T. Liem and G. A. Venema, Characterization of knot complements in the 4sphere, Topology Appl. 42 (1991), 231245. MR 1137949 (92k:57045)
 [9]
 , On the asphericity of knot complements, Canad. J. Math. 45 (1993), 340356. MR 1208119 (93m:57027)
 [10]
 J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 916. MR 0179803 (31:4045)
 [11]
 D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327337. MR 0161320 (28:4528)
 [12]
 J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston, 1968, pp. 115133. MR 0242163 (39:3497)
 [13]
 D.W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229240. MR 0253316 (40:6531)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
57M30,
55M05,
55Q05
Retrieve articles in all journals
with MSC:
57M30,
55M05,
55Q05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199513075708
PII:
S 00029939(1995)13075708
Keywords:
Knot complement,
homotopy groups,
duality
Article copyright:
© Copyright 1995
American Mathematical Society
