Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the Friedrichs operator


Authors: Peng Lin and Richard Rochberg
Journal: Proc. Amer. Math. Soc. 123 (1995), 3335-3342
MSC: Primary 47B38; Secondary 32A37, 32H10, 46E99, 47B10
MathSciNet review: 1264822
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $ be a simply connected domain in $ {\mathbb{C}^1}$ with the area measure dA. Let $ {\bar P_\Omega }$ be the orthogonal projection from $ {L^2}(\Omega ,dA)$ onto the closed subspace of antiholomorphic functions in $ {L^2}(\Omega ,dA)$. The Friedrichs operator $ {\bar T_\Omega }$ associated to $ \Omega $ is the operator from the Bergman space $ L_a^2(\Omega )$ into $ {L^2}(\Omega ,dA)$ defined by $ {\bar T_\Omega }f = {\bar P_\Omega }f$. In this note, some smoothness conditions on the boundary of $ \Omega $ are given such that the Friedrichs operator $ {\bar T_\Omega }$ belongs to the Schatten classes $ {S_p}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38, 32A37, 32H10, 46E99, 47B10

Retrieve articles in all journals with MSC: 47B38, 32A37, 32H10, 46E99, 47B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1264822-8
PII: S 0002-9939(1995)1264822-8
Article copyright: © Copyright 1995 American Mathematical Society