Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$ n$-Laplacian in $ \mathcal{H}\sp 1\sb \mathrm{loc}$ does not lead to regularity

Author: Nikan B. Firoozye
Journal: Proc. Amer. Math. Soc. 123 (1995), 3357-3360
MSC: Primary 35J05; Secondary 42B30
MathSciNet review: 1277110
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that in two space dimensions, if a solution to Poisson's equation has right-hand side in $ \mathcal{H}_{{\text{loc}}}^1$, then this solution is actually continuous. The corresponding result for n-Laplacians is shown to be false for $ n \geq 3$; we construct two examples with right-hand sides in $ \mathcal{H}_{{\text{loc}}}^1({\Re ^n})$ such that the corresponding solutions to the n-Laplacian are unbounded in the first case, and bounded but discontinuous in the second.

References [Enhancements On Off] (What's this?)

  • [1] Fabrice Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), no. 4, 417–443. MR 1208652, 10.1007/BF02599324
  • [2] E. DiBenedetto and J. J. Manfredi, Remarks on the regularity of solutions of certain degenerate elliptic systems, Univ. of Bonn, preprint no. 142, 1990.
  • [3] Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435, 10.1007/BF00375587
  • [4] L. C. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, Univ. of Bonn preprint no. 262, 1992.
  • [5] Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596 (French, with English summary). MR 1101039
  • [6] Frédéric Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), no. 2, 203–218. MR 1085633, 10.1007/BF02568371
  • [7] J. Malý and T. Kilpeläinen, The Wiener test and potential estimates for quasilinear elliptic equations, preprint, 1993.
  • [8] Libin Mou and Paul Yang, Regularity for 𝑛-harmonic maps, J. Geom. Anal. 6 (1996), no. 1, 91–112. MR 1402388, 10.1007/BF02921568
  • [9] Stephen Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), no. 1-2, 277–319. MR 1257006, 10.1080/03605309408821017
  • [10] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [11] Peter Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl. (4) 134 (1983), 241–266. MR 736742, 10.1007/BF01773507
  • [12] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), no. 3-4, 219–240. MR 0474389

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J05, 42B30

Retrieve articles in all journals with MSC: 35J05, 42B30

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society