Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Smooth norms that depend locally on finitely many coordinates


Author: Petr Hájek
Journal: Proc. Amer. Math. Soc. 123 (1995), 3817-3821
MSC: Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1995-1285993-3
MathSciNet review: 1285993
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize separable normed spaces that admit equivalent $ {C^\infty }$-smooth norms depending locally on finitely many coordinates. It follows, in particular, that such norms exist on any normed space with countable algebraic basis.


References [Enhancements On Off] (What's this?)

  • [1] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs Surveys Pure Appl. Math., vol. 64, Longman Sci. Tech., Harlow, 1993. MR 1211634 (94d:46012)
  • [2] M. Fabian, J. H. M. Whitfield, and V. Zizler, Norms with locally Lipschitzian derivatives, Israel J. Math. 44 (1983), 262-276. MR 693663 (84i:46028)
  • [3] V. P. Fonf, One property of Lindenstrauss-Phelps spaces, Funktsional. Anal, i Prilozhen. 13 (1977), 79-80. MR 527533 (80c:46022)
  • [4] G. Godefroy, Some applications of Simon's inequality, preprint. MR 1767034 (2002c:46026)
  • [5] B. V. Godun, B. L. Lin, and S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (1992), 673-675. MR 1070518 (92f:46014)
  • [6] R. G. Haydon, Infinitely differentiable norms on certain Banach spaces, preprint.
  • [7] -, Normes et partitions de l'unité indéfiniment différentiables sur certains espaces de Banach, C. R. Acad. Sci. Paris Ser. I 315 (1992), 1175-1178. MR 1194512 (94b:46010)
  • [8] -, Trees in renorming theory, preprint.
  • [9] W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. MR 0280983 (43:6702)
  • [10] J. Lindenstrauss and R. R. Phelps, Extreme points properties of convex bodies in reflexive Banach spaces, Israel J. Math. 6 (1968), 39-48. MR 0234260 (38:2577)
  • [11] J. Pechanec, J. H. M. Whitfield, and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil. Ciênc. 53 (1981), 415-417. MR 663236 (83h:46025)
  • [12] M. Talagrand, Renormages de quelques $ C(K)$, Israel J. Math. 54 (1986), 323-334. MR 853457 (88d:46041)
  • [13] S. Troyanski, Gâteaux differentiable norms in $ {L_p}$, Math. Ann. 287 (1990), 221-227. MR 1054565 (91i:46026)
  • [14] J. Vanderwerff, Frechet differentiable norms on spaces of countable dimension, Arch. Math. 58 (1992), 471-476. MR 1156579 (93b:46033)
  • [15] J. H. M. Whitfield and V. Zizler, Extremal structure of convex sets in spaces not containing $ {c_0}$, Math. Z. 197 (1988), 219-221. MR 923489 (88m:46026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1285993-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society