Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Algebraic difference between $p$-classes
of an H*-algebra


Author: Lajos Molnár
Journal: Proc. Amer. Math. Soc. 124 (1996), 169-175
MSC (1991): Primary 46K15, 47D50; Secondary 46L40
DOI: https://doi.org/10.1090/S0002-9939-96-03048-1
MathSciNet review: 1291787
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there do not exist surjective ring homomorphisms between different $p$-classes of an infinite-dimensional H*-algebra.


References [Enhancements On Off] (What's this?)

  • 1 J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press., Cambridge, 1989. MR 90h:39001
  • 2 W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364--386. MR 7:126c
  • 3 B.H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 24--49. MR 5:147c
  • 4 F.F. Bonsall and J. Duncan, Complete normed algebras, Springer, New York, 1973. MR 54:11013
  • 5 R.W. Cross, On the continuous linear image of a Banach space, J. Austral. Math. Soc. Ser. A 29 (1980), 219--234. MR 81f:47001
  • 6 I.N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, IL, 1969. MR 42:6018
  • 7 N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479--502. MR 12:387h
  • 8 M. Kuczma, An introduction to the theory of functional equations and inequalities, PWN, Warszawa, 1985. MR 86i:39008
  • 9 J. La Duke, On a certain generalization of $l_p$ spaces, Pacific J. Math. 35 (1970), 155--168. MR 43:896
  • 10 L. Molnár, *-representations of the trace-class of an H*-algebra, Proc. Amer. Math. Soc. 115 (1992), 167--170. MR 92i:46064
  • 11 ------, $p$-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), 411--423. MR 95c:46081
  • 12 M. Omladic and P. Semrl, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182 (1993), 239--256. MR 94f:47039
  • 13 P.P. Saworotnow and J.C. Friedell, Trace-class for an arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95--100. MR 42:2304
  • 14 P.P. Saworotnow, Trace-class and centralizers of an H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 101--104. MR 42:2305
  • 15 P.P. Saworotnow and G.R. Giellis, Continuity and linearity of centralizers on a complemented algebra, Proc. Amer. Math. Soc. 31 (1972), 142--146. MR 44:5781
  • 16 P.P. Saworotnow, Generalized positive definite functions and stationary processes, Prediction Theory and Harmonic Analysis (V. Mandrekar and H. Salehi, eds.), North-Holland, Amsterdam, 1983, pp. (329--343). MR 84j:60045
  • 17 ------, Diagonalization of a self-adjoint operator acting on a Hilbert module, Internat. J. Math. Math. Sci. 8 (1985), 669--675. MR 87f:46084
  • 18 P. Semrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991), 234--240. MR 92b:47068
  • 19 ------, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993), 318--324. MR 94h:47084
  • 20 ------, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 1851--1855. MR 95g:47066
  • 21 J.F. Smith, The $p$-classes of an H*-algebra, Pacific J. Math. 42 (1972), 777--793. MR 48:879
  • 22 P.K. Wong, The $p$-class in a dual $B^*$-algebra, Trans. Amer. Math. Soc. 200 (1974), 355--368. MR 50:10837

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46K15, 47D50, 46L40

Retrieve articles in all journals with MSC (1991): 46K15, 47D50, 46L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-96-03048-1
Keywords: H*-algebra, $p$-classes, Jordan homomorphism
Received by editor(s): July 25, 1994
Additional Notes: Research partially supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA 1652 and K&H Bank Ltd., Universitas Foundation.
Communicated by: \commby Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society