A proportional Dvoretzky-Rogers

factorization result

Author:
A. A. Giannopoulos

Journal:
Proc. Amer. Math. Soc. **124** (1996), 233-241

MSC (1991):
Primary 46B07

DOI:
https://doi.org/10.1090/S0002-9939-96-03071-7

MathSciNet review:
1301496

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is an -dimensional normed space and , there exists , such that the formal identity can be written as , with . This is proved as a consequence of a Sauer-Shelah type theorem for ellipsoids.

**[B-S]**J. Bourgain and S. J. Szarek,*The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization*, Israel J. Math.**62**1988, 169--180. MR**89g:46026****[B-T]**J. Bourgain and L. Tzafriri,*Invertibility of ``large'' submatrices with applications to the geometry of Banach spaces and harmonic analysis*, Israel J. Math.**57**(1987), 137--224. MR**89a:46035****[D-R]**A. Dvoretzky and C. A. Rogers,*Absolute and unconditional convergence in normed linear spaces*, Proc. Nat. Acad. Sci. U.S.A.**36**(1950), 192--197. MR**11:525a****[G]**A. A. Giannopoulos,*A note on the Banach-Mazur distance to the cube*, GAFA Seminar (to appear).**[J]**F. John,*Extremum problems with inequalities as subsidiary conditions*, Courant Anniversary Volume, Interscience, New York, 1948. MR**10:719b****[L-T]**J. Lindenstrauss and L. Tzafriri,*Classical Banach spaces I: Sequence spaces*, Springer-Verlag, Berlin and New York, 1977. MR**58:17766****[M-Sc]**V. D. Milman and G. Schechtman,*Asymptotic theory of finite dimensional normed spaces*, Lecture Notes in Math., vol. 1200, Springer-Verlag, Berlin and New York, 1986. MR**87m:46038****[Pi]**A. Pietsch,*Operator ideals*, North-Holland, Amsterdam, 1978. MR**81a:47002****[S-T]**S. J. Szarek and M. Talagrand,*An ``isomorphic'' version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube*, GAFA Seminar 87-88, Lecture Notes in Math., vol. 1376, Springer-Verlag, Berlin and New York, 1989, 105--112. MR**90h:46034****[Sa]**N. Sauer,*On the density of families of sets*, J. Combin. Theory Ser. A**13**(1972), 145--147. MR**46:7017****[Sh]**S. Shelah,*A combinatorial problem: stability and order for models and theories in infinitary languages*, Pacific J. Math.**41**(1972), 247--261. MR**46:7018****[Sz.1]**S. J. Szarek,*Spaces with large distance to and random matrices*, Amer. J. Math.**112**(1990), 899--942. MR**91j:46023****[Sz.2]**------,*On the geometry of the Banach-Mazur compactum*, Lecture Notes in Math., vol. 1470, Springer-Verlag, Berlin and New York, 1991, pp. 48--59. MR**93b:46019****[T-J]**N. Tomczak-Jaegermann,*Banach-Mazur distances and finite dimensional operator ideals*, Longman Sci. Tech., Harlow, 1988. MR**90k:46039**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46B07

Retrieve articles in all journals with MSC (1991): 46B07

Additional Information

**A. A. Giannopoulos**

Affiliation:
Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106

Address at time of publication:
Department of Mathematics, University of Crete, Iraklion, Crete, Greece

Email:
deligia@talos.cc.uch.gr

DOI:
https://doi.org/10.1090/S0002-9939-96-03071-7

Received by editor(s):
February 21, 1994

Received by editor(s) in revised form:
August 15, 1994

Communicated by:
Dale Alspach

Article copyright:
© Copyright 1996
American Mathematical Society