Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A proportional Dvoretzky-Rogers
factorization result


Author: A. A. Giannopoulos
Journal: Proc. Amer. Math. Soc. 124 (1996), 233-241
MSC (1991): Primary 46B07
DOI: https://doi.org/10.1090/S0002-9939-96-03071-7
MathSciNet review: 1301496
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $X$ is an $n$-dimensional normed space and $\varepsilon\in(0,1)$, there exists $m\geq(1-\varepsilon)n$, such that the formal identity $i_{2,\infty}\colon l^m_2\to l^m_\infty$ can be written as $i_{2,\infty}=\alpha\circ\beta,\beta\colon l^m_2\to X,\alpha\colon X\to l^m_\infty$, with $\|\alpha\|\cdot\|\beta\|\leq c/\varepsilon$. This is proved as a consequence of a Sauer-Shelah type theorem for ellipsoids.


References [Enhancements On Off] (What's this?)

  • [B-S] J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 1988, 169--180. MR 89g:46026
  • [B-T] J. Bourgain and L. Tzafriri, Invertibility of ``large'' submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137--224. MR 89a:46035
  • [D-R] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192--197. MR 11:525a
  • [G] A. A. Giannopoulos, A note on the Banach-Mazur distance to the cube, GAFA Seminar (to appear).
  • [J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York, 1948. MR 10:719b
  • [L-T] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I: Sequence spaces, Springer-Verlag, Berlin and New York, 1977. MR 58:17766
  • [M-Sc] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math., vol. 1200, Springer-Verlag, Berlin and New York, 1986. MR 87m:46038
  • [Pi] A. Pietsch, Operator ideals, North-Holland, Amsterdam, 1978. MR 81a:47002
  • [S-T] S. J. Szarek and M. Talagrand, An ``isomorphic'' version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, GAFA Seminar 87-88, Lecture Notes in Math., vol. 1376, Springer-Verlag, Berlin and New York, 1989, 105--112. MR 90h:46034
  • [Sa] N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145--147. MR 46:7017
  • [Sh] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247--261. MR 46:7018
  • [Sz.1] S. J. Szarek, Spaces with large distance to $l^n_\infty$ and random matrices, Amer. J. Math. 112 (1990), 899--942. MR 91j:46023
  • [Sz.2] ------, On the geometry of the Banach-Mazur compactum, Lecture Notes in Math., vol. 1470, Springer-Verlag, Berlin and New York, 1991, pp. 48--59. MR 93b:46019
  • [T-J] N. Tomczak-Jaegermann, Banach-Mazur distances and finite dimensional operator ideals, Longman Sci. Tech., Harlow, 1988. MR 90k:46039

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B07

Retrieve articles in all journals with MSC (1991): 46B07


Additional Information

A. A. Giannopoulos
Affiliation: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106
Address at time of publication: Department of Mathematics, University of Crete, Iraklion, Crete, Greece
Email: deligia@talos.cc.uch.gr

DOI: https://doi.org/10.1090/S0002-9939-96-03071-7
Received by editor(s): February 21, 1994
Received by editor(s) in revised form: August 15, 1994
Communicated by: Dale Alspach
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society