Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomials with roots modulo every integer


Authors: Daniel Berend and Yuri Bilu
Journal: Proc. Amer. Math. Soc. 124 (1996), 1663-1671
MSC (1991): Primary 11R09, 11R45; Secondary 11D61, 11U05
DOI: https://doi.org/10.1090/S0002-9939-96-03210-8
MathSciNet review: 1307495
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a polynomial with integer coefficients, we calculate the density of the set of primes modulo which the polynomial has a root. We also give a simple criterion to decide whether or not the polynomial has a root modulo every non-zero integer.


References [Enhancements On Off] (What's this?)

  • [A] J. Ax, Solving diophantine problems modulo every prime, Ann. Math. 85 (1967), 161--183. MR 35:126
  • [Ba] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), 355--380. MR 91m:11096
  • [Bo] M. Boshernitzan, On recurrence and spread in dynamical systems, preprint.
  • [BH] D. Berend and J. E. Harmse, On polynomial-factorial and similar diophantine equations, preprint.
  • [BO] D. Berend and C. F. Osgood, On the equation $P(x)=n!$ and a question of Erdos, J. Number Theory 42 (1992), 189--193.
  • [BS] Z. I. Borevich and I. R. Shafarevich, J. Number Theory, Academic Press, New York, 1966.
  • [CF] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory (Proceedings of an Instructional Conference, University of Sussex, 1965),, Academic Press and St Edmundsbury Press, Suffolk, 1990.
  • [EO] P. Erdos and R. Obláth, Über diophantische Gleichungen der Form $n!=x^{p}\pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Szeged 8 (1937), 241--255.
  • [FS] M. Fried and G. Sacerdote,, Solving diophantine problems over all residue class fields of an algebraic number field and all finite fields, Ann. Math. 104 (1976), 203--233. MR 58:10722
  • [Fu] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981. MR 82j:28010
  • [Gu] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981. MR 83k:10002
  • [KM] T. Kamae and M. Mendes France, Van der Corput's difference theorem, Israel J. of Math. 31 (1978), 335--342. MR 80a:10070
  • [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. MR 54:7415
  • [L] J.C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. of Math. 24 (1983), 224--239. MR 85f:11081
  • [LMO] J.C. Lagarias, H.L. Montgomery and A.M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271--296. MR 81b:12013
  • [LO] J.C. Lagarias and A.M. Odlyzko, Effective Versions of the Chebotarev density theorem, Algebraic Number Fields, (Proceedings of a Symposium held at University of Durham, 1975) (A. Fröhlich, ed.), Academic Press, London, 1977, pp. 409--464. MR 56:5506
  • [N] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer-Verlag, and PWN--Polish Scientific Publishers, Warsaw, 1990. MR 91h:11107
  • [O] J. Osterlé, Versions effectives du théorème de Chebotarev sous l'hypothése de Riemann généralisé,, Soc. Math. France Astérisque 61 (1979), 165--167.
  • [Sá1] A. Sárközy, On difference sets of sequences of integers, I, Acta Math. Acad. Sci. Hung. 31 (1978), 125--149. MR 57:5942
  • [Sá2] ------, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 21 (1978), 45--53. MR 80j:10062a
  • [Sá3] ------, On difference sets of sequences of integers, III, Acta Math. Acad. Sci. Hung. 31 (1978), 355-386. MR 80j:10062b
  • [Schm] W. Schmidt, Construction and Estimates of Bases in Function Fields, J. Number Theory 39 (1991), 181--224. MR 93b:11079
  • [Schu1] V. Schulze, Die Primteilerdichte von ganzzahligen Polynomen, I, J. Reine Angew. Math. 253 (1972), 175--185. MR 45:8640
  • [Schu2] ------, Die Primteilerdichte von ganzzahligen Polynomen, II, J. Reine Angew. Math. 256 (1972), 153--162. MR 47:178
  • [Schu3] ------, Die Primteilerdichte von ganzzahligen Polynomen, III, J. Reine Angew. Math. 273 (1975), 144--145. MR 51:5559
  • [vW] B.L. van der Waerden, Algebra I, Springer, 1971.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11R09, 11R45, 11D61, 11U05

Retrieve articles in all journals with MSC (1991): 11R09, 11R45, 11D61, 11U05


Additional Information

Daniel Berend
Affiliation: Department of Mathematics and Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel
Email: berend@black.bgu.ac.il

Yuri Bilu
Affiliation: Department of Mathematics and Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel and Université Bordeaux 2, Mathématiques Stochastiques, BP26, F-33076 Bordeaux Cedex, France
Address at time of publication: Max Planck Institute for Mathematics, Gottfried Claren Str. 26, 53225 Bonn, Germany
Email: yuri@cfgauss.uni-math.gwdg.de

DOI: https://doi.org/10.1090/S0002-9939-96-03210-8
Keywords: Diophantine equations, congruences, effective number theory, Poincar\'{e} sets
Received by editor(s): March 7, 1994
Received by editor(s) in revised form: November 28, 1994
Communicated by: William W. Adams
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society