On the perturbation theory

of -accretive operators

in Banach spaces

Author:
Athanassios G. Kartsatos

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1811-1820

MSC (1991):
Primary 47H17; Secondary 47B44, 47H09, 47H10

DOI:
https://doi.org/10.1090/S0002-9939-96-03349-7

MathSciNet review:
1327021

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real Banach space. Let be -accretive with compact. Let be such that is condensing for some Let and assume that there exists a bounded open set and such that is bounded and

for all Then A basic homotopy result of the degree theory for with condensing and possibly unbounded, is used to improve and/or extend recent results by Hirano and Kalinde.

**[1]**V. Barbu,*Nonlinear Semigroups and Differential Equations in Banach Spaces*, Noordhoff Int. Publ., Leyden (The Netherlands), 1975.**[2]**F. E. Browder,*Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces*, Proc. Symp. Pure Appl. Math.,**18**, Part 2, Providence, 1976. MR**53:8982****[3]**Y. Z. Chen,*The generalized degree for compact perturbations of -accretive operators and applications*, Nonl. Anal. TMA**13**(1989), 393-403. MR**90c:47094****[4]**I. Cioranescu,*Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,*Kluwer Acad. Publ., Boston, 1990. MR**91m:46021****[5]**K. Deimling,*Nonlinear Functional Analysis*, Springer-Verlag, New York, 1985. MR**86j:47001****[6]**Z. Ding and A. G. Kartsatos,*Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces*, Nonl. Anal. TMA**25**(1995), 1333--1342.**[7]**Z. Guan,*Ranges of operators of monotone type in Banach spaces*, J. Math. Anal. Appl.**174**(1993), 256-264. MR**95b:47068****[8]**Z. Guan,*Solvability of semilinear equations with compact perturbations of operators of monotone type*, Proc. Amer. Math. Soc.**121**(1994), 93-102. MR**94g:47080****[9]**Z. Guan and A. G. Kartsatos,*Solvability of nonlinear equations with coercivity generated by compact perturbations of -accretive operators in Banach spaces*, Houston J. Math.**21**(1995), 149--188.**[10]**Z. Guan and A. G. Kartsatos,*Ranges of perturbed maximal monotone and -accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**347**(1995), 2403--2435. CMP**95:02****[11]**N. Hirano and A. K. Kalinde,*On perturbations of -accretive operators in Banach spaces*, Proc. Amer. Math. Soc. (to appear). CMP**95:03****[12]**D. R. Kaplan and A. G. Kartsatos,*Ranges of sums and control of nonlinear evolutions with preassigned responses*, J. Opt. Th. Appl.**81**(1994), 121-141. CMP**94:12****[13]**A. G. Kartsatos,*On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**119**(1993), 1189-1199. MR**94c:47076****[14]**A. G. Kartsatos,*Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces*, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter De Gruyter, New York, 1995, pp. 2197--2222.**[15]**A. G. Kartsatos,*On the construction of methods of lines for functional evolutions in general Banach spaces*, Nonl. Anal. TMA**25**(1995), 1321--1331.**[16]**A. G. Kartsatos,*A compact evolution operator generated by a time-dependent -accretive operator in a general Banach space*, Math. Ann.**302**(1995), 473--487. CMP**94:12****[17]**A. G. Kartsatos,*New results in the perturbations theory of maximal monotone and -accretive operators in Banach spaces*, Trans. Amer. Math. Soc. (to appear).**[18]**V. Lakshmikantham and S. Leela,*Nonlinear Differential Equations in Abstract Spaces*, Pergamon Press, Oxford, 1981. MR**82i:34072****[19]**N. G. Liu,*The generalized degree for set contracting perturbation of -accretive operator and applications*, Nonl. Anal. TMA**18**(1992), 605-618. MR**93g:47077****[20]**N. G. Lloyd,*Degree Theory*, Cambridge Univ. Press, Cambridge, 1978. MR**58:12558****[21]**M. Nagumo,*Degree of mapping in convex linear topological spaces*, Amer. J. Math.**73**(1951), 497-511. MR**13:150b****[22]**W. V. Petryshyn,*Approximation-Solvability of Nonlinear Functional and Differential Equations*, Marcel Dekker, New York, 1993. MR**94f:47081**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H17,
47B44,
47H09,
47H10

Retrieve articles in all journals with MSC (1991): 47H17, 47B44, 47H09, 47H10

Additional Information

**Athanassios G. Kartsatos**

Affiliation:
Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

Email:
hermes@gauss.math.usf.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03349-7

Keywords:
Accretive operator,
$m$-accretive operator,
compact perturbation,
compact resolvent,
degree theory for condensing mappings

Received by editor(s):
December 5, 1994

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society