On the perturbation theory

of -accretive operators

in Banach spaces

Author:
Athanassios G. Kartsatos

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1811-1820

MSC (1991):
Primary 47H17; Secondary 47B44, 47H09, 47H10

MathSciNet review:
1327021

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real Banach space. Let be -accretive with compact. Let be such that is condensing for some Let and assume that there exists a bounded open set and such that is bounded and

for all Then A basic homotopy result of the degree theory for with condensing and possibly unbounded, is used to improve and/or extend recent results by Hirano and Kalinde.

**[1]**V. Barbu,*Nonlinear Semigroups and Differential Equations in Banach Spaces*, Noordhoff Int. Publ., Leyden (The Netherlands), 1975.**[2]**Felix E. Browder,*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1–308. MR**0405188****[3]**Yong Zhuo Chen,*The generalized degree for compact perturbations of 𝑚-accretive operators and applications*, Nonlinear Anal.**13**(1989), no. 4, 393–403. MR**987376**, 10.1016/0362-546X(89)90046-1**[4]**Ioana Cioranescu,*Geometry of Banach spaces, duality mappings and nonlinear problems*, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR**1079061****[5]**Klaus Deimling,*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404****[6]**Z. Ding and A. G. Kartsatos,*Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces*, Nonl. Anal. TMA**25**(1995), 1333--1342.**[7]**Zhengyuan Guan,*Ranges of operators of monotone type in Banach space*, J. Math. Anal. Appl.**174**(1993), no. 1, 256–264. MR**1212931**, 10.1006/jmaa.1993.1115**[8]**Zhengyuan Guan,*Solvability of semilinear equations with compact perturbations of operators of monotone type*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 93–102. MR**1174492**, 10.1090/S0002-9939-1994-1174492-4**[9]**Z. Guan and A. G. Kartsatos,*Solvability of nonlinear equations with coercivity generated by compact perturbations of -accretive operators in Banach spaces*, Houston J. Math.**21**(1995), 149--188.**[10]**Z. Guan and A. G. Kartsatos,*Ranges of perturbed maximal monotone and -accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**347**(1995), 2403--2435. CMP**95:02****[11]**N. Hirano and A. K. Kalinde,*On perturbations of -accretive operators in Banach spaces*, Proc. Amer. Math. Soc. (to appear). CMP**95:03****[12]**D. R. Kaplan and A. G. Kartsatos,*Ranges of sums and control of nonlinear evolutions with preassigned responses*, J. Opt. Th. Appl.**81**(1994), 121-141. CMP**94:12****[13]**Athanassios G. Kartsatos,*On compact perturbations and compact resolvents of nonlinear 𝑚-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**119**(1993), no. 4, 1189–1199. MR**1216817**, 10.1090/S0002-9939-1993-1216817-6**[14]**A. G. Kartsatos,*Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces*, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter De Gruyter, New York, 1995, pp. 2197--2222.**[15]**A. G. Kartsatos,*On the construction of methods of lines for functional evolutions in general Banach spaces*, Nonl. Anal. TMA**25**(1995), 1321--1331.**[16]**A. G. Kartsatos,*A compact evolution operator generated by a time-dependent -accretive operator in a general Banach space*, Math. Ann.**302**(1995), 473--487. CMP**94:12****[17]**A. G. Kartsatos,*New results in the perturbations theory of maximal monotone and -accretive operators in Banach spaces*, Trans. Amer. Math. Soc. (to appear).**[18]**V. Lakshmikantham and S. Leela,*Nonlinear differential equations in abstract spaces*, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR**616449****[19]**Nai Gong Liu,*The generalized degree for 1-set contraction mapping perturbation of 𝑚-accretive operator and applications*, Nonlinear Anal.**18**(1992), no. 7, 605–618. MR**1157562**, 10.1016/0362-546X(92)90001-U**[20]**N. G. Lloyd,*Degree theory*, Cambridge University Press, Cambridge-New York-Melbourne, 1978. Cambridge Tracts in Mathematics, No. 73. MR**0493564****[21]**Mitio Nagumo,*Degree of mapping in convex linear topological spaces*, Amer. J. Math.**73**(1951), 497–511. MR**0042697****[22]**Wolodymyr V. Petryshyn,*Approximation-solvability of nonlinear functional and differential equations*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 171, Marcel Dekker, Inc., New York, 1993. MR**1200455**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H17,
47B44,
47H09,
47H10

Retrieve articles in all journals with MSC (1991): 47H17, 47B44, 47H09, 47H10

Additional Information

**Athanassios G. Kartsatos**

Affiliation:
Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

Email:
hermes@gauss.math.usf.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03349-7

Keywords:
Accretive operator,
$m$-accretive operator,
compact perturbation,
compact resolvent,
degree theory for condensing mappings

Received by editor(s):
December 5, 1994

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society