On relative Hausdorff measures

of noncompactness and relative

Chebyshev radii in Banach spaces

Authors:
Andrzej Wisnicki and Jacek Wosko

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2465-2474

MSC (1991):
Primary 41A65, 46B20, 47H09; Secondary 41A50, 47H10

DOI:
https://doi.org/10.1090/S0002-9939-96-03374-6

MathSciNet review:
1327052

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove some formulae and evaluations on relative Hausdorff measures of noncompactness and relative Chebyshev radii in various Banach spaces. We generalize the Lifschitz constant and introduce a function .

**1.**P. P. Akhmerov, M. J. Kamenskii, A. S. Potapov et al.,*Measures of noncompactness and condensing operators*, Nauka, Novosybirsk, 1986. (Russian) MR**88f:47048****2.**J. Banas and K. Goebel,*Measures of noncompactness in Banach spaces*, Lecture Notes in Pure and Applied Math., New York and Basel, 1980. MR**82f:47066****3.**D. J. Downing and B. Turett,*Some properties of the characteristic of convexity relating to fixed point theory*, Pacific J. Math.**104**(1983), 343--350. MR**84b:47070****4.**C. Franchetti and E. W. Cheney,*Simultaneous approximation and restricted Chebyshev centers in function spaces*, in*Approximation Theory and Applications*, Academic Press, New York, 1981, pp. 65--88. MR**82f:41042****5.**A. Garkavi,*The best possible net and the best possible cross-section of a set in a normed space*, Izv. Akad. Nauk SSSR**26**(1962), 87--106. (Russian) (Translated in Amer. Math. Soc. Transl., Ser. 2,**39**(1964).) MR**25:429****6.**K. Goebel and W. A. Kirk,*A fixed point theorem for transformations whose iterates have uniform Lipschitz constant*, Studia Math.**67**(1973), 135--140. MR**49:1242****7.**------,*Topics in metric fixed point theory*, Cambridge Univ. Press, London, 1990. MR**92c:47070****8.**K. Goebel and S. Reich,*Uniformly convexity, nonexpansive mappings, hyperbolic geometry*, Marcel Dekker, New York, 1984. MR**86d:58012****9.**R. B. Holmes,*A course on optimization and best approximation*, Lecture Notes in Math., vol. 257, Springer-Verlag, New York, 1972. MR**54:8381****10.**E. A. Lifschitz,*Fixed point theorems for operators in strongly convex spaces*, Voronez Gos. Univ. Trudy Mat. Fak.**16**(1975), 23--28. (Russian)**11.**T. C. Lim,*Fixed point theorems for uniformly Lipschitzian mappings in spaces*, Nonlinear Anal. TMA**7**(1983), 555--563. MR**84g:47050****12.**T. C. Lim, H. K. Xu, and Z. B. Xu,*Some inequalities and their applications to fixed point theory and approximation theory*, in*Progress in Approximation Theory*, Academic Press, New York, 1991, pp. 609--624. MR**92j:47112****13.**I. Singer,*Best approximation in normed linear spaces by elements of linear subspaces*, Springer-Verlag, New York and Berlin, 1970. MR**42:4937****14.**R. Smarzewski,*On an inequality of Bynum and Drew*, J. Math. Anal. Appl.**150**(1990), 146--150. MR**91g:47047****15.**P. W. Smith and I. D. Ward,*Restricted centers in*, Proc. Amer. Math. Soc.**48**(1975), 165--172. MR**52:1127****16.**A. Wisnicki,*Hausdorff measure of noncompactness in subspaces of continuous functions of codimension one*, Nonlinear Anal.**25**(1995), 223--228. CMP**95:14**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
41A65,
46B20,
47H09,
41A50,
47H10

Retrieve articles in all journals with MSC (1991): 41A65, 46B20, 47H09, 41A50, 47H10

Additional Information

**Andrzej Wisnicki**

Affiliation:
Department of Mathematics, UMCS, Pl. M. C. Skłodowskiej 1, 20-031 Lublin, Poland

Email:
awisnic@golem.umcs.lublin.pl

**Jacek Wosko**

Affiliation:
Department of Mathematics, UMCS, Pl. M. C. Skłodowskiej 1, 20-031 Lublin, Poland

Email:
jwosko@golem.umcs.lublin.pl

DOI:
https://doi.org/10.1090/S0002-9939-96-03374-6

Keywords:
Chebyshev radius,
Hausdorff measure of noncompactness,
Hausdorff distance,
Lifschitz constant,
$L^p$ spaces,
space of continuous functions.

Received by editor(s):
September 19, 1994

Received by editor(s) in revised form:
February 24, 1995

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society