Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On relative Hausdorff measures
of noncompactness and relative
Chebyshev radii in Banach spaces


Authors: Andrzej Wisnicki and Jacek Wosko
Journal: Proc. Amer. Math. Soc. 124 (1996), 2465-2474
MSC (1991): Primary 41A65, 46B20, 47H09; Secondary 41A50, 47H10
DOI: https://doi.org/10.1090/S0002-9939-96-03374-6
MathSciNet review: 1327052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove some formulae and evaluations on relative Hausdorff measures of noncompactness and relative Chebyshev radii in various Banach spaces. We generalize the Lifschitz constant $\kappa (X)$ and introduce a function $\tilde {\kappa }_X(\cdot )$.


References [Enhancements On Off] (What's this?)

  • 1. P. P. Akhmerov, M. J. Kamenskii, A. S. Potapov et al., Measures of noncompactness and condensing operators, Nauka, Novosybirsk, 1986. (Russian) MR 88f:47048
  • 2. J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Math., New York and Basel, 1980. MR 82f:47066
  • 3. D. J. Downing and B. Turett, Some properties of the characteristic of convexity relating to fixed point theory, Pacific J. Math. 104 (1983), 343--350. MR 84b:47070
  • 4. C. Franchetti and E. W. Cheney, Simultaneous approximation and restricted Chebyshev centers in function spaces, in Approximation Theory and Applications, Academic Press, New York, 1981, pp. 65--88. MR 82f:41042
  • 5. A. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR 26 (1962), 87--106. (Russian) (Translated in Amer. Math. Soc. Transl., Ser. 2, 39 (1964).) MR 25:429
  • 6. K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 67 (1973), 135--140. MR 49:1242
  • 7. ------, Topics in metric fixed point theory, Cambridge Univ. Press, London, 1990. MR 92c:47070
  • 8. K. Goebel and S. Reich, Uniformly convexity, nonexpansive mappings, hyperbolic geometry, Marcel Dekker, New York, 1984. MR 86d:58012
  • 9. R. B. Holmes, A course on optimization and best approximation, Lecture Notes in Math., vol. 257, Springer-Verlag, New York, 1972. MR 54:8381
  • 10. E. A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak. 16 (1975), 23--28. (Russian)
  • 11. T. C. Lim, Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces, Nonlinear Anal. TMA 7 (1983), 555--563. MR 84g:47050
  • 12. T. C. Lim, H. K. Xu, and Z. B. Xu, Some $L^p$ inequalities and their applications to fixed point theory and approximation theory, in Progress in Approximation Theory, Academic Press, New York, 1991, pp. 609--624. MR 92j:47112
  • 13. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York and Berlin, 1970. MR 42:4937
  • 14. R. Smarzewski, On an inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146--150. MR 91g:47047
  • 15. P. W. Smith and I. D. Ward, Restricted centers in $C(\Omega )$, Proc. Amer. Math. Soc. 48 (1975), 165--172. MR 52:1127
  • 16. A. Wisnicki, Hausdorff measure of noncompactness in subspaces of continuous functions of codimension one, Nonlinear Anal. 25 (1995), 223--228. CMP 95:14

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 41A65, 46B20, 47H09, 41A50, 47H10

Retrieve articles in all journals with MSC (1991): 41A65, 46B20, 47H09, 41A50, 47H10


Additional Information

Andrzej Wisnicki
Affiliation: Department of Mathematics, UMCS, Pl. M. C. Skłodowskiej 1, 20-031 Lublin, Poland
Email: awisnic@golem.umcs.lublin.pl

Jacek Wosko
Affiliation: Department of Mathematics, UMCS, Pl. M. C. Skłodowskiej 1, 20-031 Lublin, Poland
Email: jwosko@golem.umcs.lublin.pl

DOI: https://doi.org/10.1090/S0002-9939-96-03374-6
Keywords: Chebyshev radius, Hausdorff measure of noncompactness, Hausdorff distance, Lifschitz constant, $L^p$ spaces, space of continuous functions.
Received by editor(s): September 19, 1994
Received by editor(s) in revised form: February 24, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society