Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extending finite group actions
from surfaces to handlebodies


Authors: Marco Reni and Bruno Zimmermann
Journal: Proc. Amer. Math. Soc. 124 (1996), 2877-2887
MSC (1991): Primary 57M60; Secondary 57S25, 30F99
DOI: https://doi.org/10.1090/S0002-9939-96-03515-0
MathSciNet review: 1343720
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every action of a finite dihedral group on a closed orientable surface $\mathcal F$ extends to a 3-dimensional handlebody $\mathcal V$, with $\partial \mathcal V=\mathcal F$. In the case of a finite abelian group $G$, we give necessary and sufficient conditions for a $G$-action on a surface to extend to a compact $3$-manifold, or, equivalently in this case, to a 3-dimensional handlebody; in particular all (fixed-point) free actions of finite abelian groups extend to handlebodies. This is no longer true for free actions of arbitrary finite groups: we give a procedure which allows us to construct free actions of finite groups on surfaces which do not extend to a handlebody. We also show that the unique Hurwitz action of order $84(g-1)$ of $PSL(2,27)$ on a surface $\mathcal F$ of genus $g=118$ does not extend to any compact 3-manifold $M$ with $\partial M=\mathcal F$, thus resolving the only case of Hurwitz actions of type $PSL(2,q)$ of low order which remained open in an earlier paper (Math. Proc. Cambridge Philos. Soc. 117 (1995), 137--151).


References [Enhancements On Off] (What's this?)

  • 1. A. Edmonds and J. Ewing, Remarks on the cobordism group of surface diffeomorphisms, Math. Ann. 259 (1982), 497--504. MR 83m:57026
  • 2. M. Gradolato and B. Zimmermann, Extending finite group actions on surfaces to hyperbolic $3$-manifolds, Math. Proc. Cambridge Philos. Soc. 117 (1995), 137--151. MR 96b:57017
  • 3. H. Glover and D. Sjerve, The genus of $PSL_2(q)$, J. Reine Angew. Math. 380 (1987), 59--86. MR 89e:20087
  • 4. A. Haefliger and Quach Ngoc Du, Une présentation du groupe fondamental d'une orbifold, Structure Transverse des Feuilletages, Astérisque 116 (1984), 98--107. MR 86c:57026b
  • 5. R. A. Hidalgo, On Schottky groups with automorphisms, Ann. Acad. Sci. Fenn. 19 (1994), 259--289. MR 95k:30092
  • 6. D. McCullough, A. Miller, and B. Zimmermann, Group actions on handlebodies, Proc. London Math. Soc. (3) 59 (1989), 373--416. MR 90h:57014
  • 7. W. H. Meeks, III and S.-T. Yau, The equivariant loop theorem for three-dimensional manifolds, The Smith Conjecture, Academic Press, New York, 1984, pp. 153--163.
  • 8. M. Reni and B. Zimmermann, Handlebody orbifolds and Schottky uniformizations of hyperbolic $2$-orbifolds, Proc. Amer. Math. Soc. 123 (1995), 3907--3914. MR 96b:57016
  • 9. J.-P. Serre, Trees, Springer, 1980. MR 82c:20083
  • 10. W. Thurston, The geometry and topology of three-dimensional manifolds, Lecture Notes, Princeton University, 1978.
  • 11. ------, Three-manifolds with symmetry, Preprint, 1982.
  • 12. H. Zieschang, E. Vogt, and H.-D. Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Math., vol. 835, Springer, Berlin, 1980. MR 82h:57002
  • 13. B. Zimmermann, Surfaces and the second homology of a group, Monatsh. Math. 104 (1987), 247--253. MR 89a:57012
  • 14. ------, Finite abelian group actions on surfaces, Yokohama Math. J. 38 (1990), 13--21. MR 92c:57037
  • 15. ------, Generators and relations for discontinuous groups, Groups and Geometries (A. Barlotti et al., eds.), Kluwer Academic Publishers, 1991, pp. 407--436. MR 93m:20050

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M60, 57S25, 30F99

Retrieve articles in all journals with MSC (1991): 57M60, 57S25, 30F99


Additional Information

Marco Reni
Affiliation: Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, 34100 Trieste, Italy
Email: reni@univ.trieste.it

Bruno Zimmermann
Affiliation: Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, 34100 Trieste, Italy
Email: zimmer@univ.trieste.it

DOI: https://doi.org/10.1090/S0002-9939-96-03515-0
Keywords: Surface, handlebody, handlebody orbifold, finite group action
Received by editor(s): February 2, 1995
Communicated by: Ronald Stern
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society