Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The classical Banach spaces $\ell _{ \varphi }/h_{ \varphi }$

Authors: Antonio S. Granero and Henryk Hudzik
Journal: Proc. Amer. Math. Soc. 124 (1996), 3777-3787
MSC (1991): Primary 46B20
MathSciNet review: 1343694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study some structural and geometric properties of the quotient Banach spaces $ \ell _{\varphi }(I)/ h_{\varphi }(\mathcal {S})$, where $I$ is an arbitrary set, $ \varphi $ is an Orlicz function, $ \ell _{\varphi }(I)$ is the corresponding Orlicz space on $I$ and $ h_{\varphi }(\mathcal {S}) =\{x\in \ell _{\varphi }(I) :\forall \lambda >0,\ \exists s\in \mathcal {S}\text { such that } I_{\varphi } (\frac {x-s}{\lambda })<\infty \}$, $ \mathcal {S}$ being the ideal of elements with finite support. The results we obtain here extend and complete the ones obtained by Leonard and Whitfield (Rocky Mountain J. Math. 13 (1983), 531-539). We show that $ \ell _{\varphi }(I) / h_{\varphi }(\mathcal {S})$ is not a dual space, that $Ext(B_{ \ell _{\varphi }(I)/ h_{\varphi }(\mathcal {S}) })=\emptyset $, if $ \varphi (t)>0$ for every $t>0$, that $S_{ \ell _{\varphi }(I)/ h_{\varphi }(\mathcal {S})}$ has no smooth points, that it cannot be renormed equivalently with a strictly convex or smooth norm, that $ \ell _{ \varphi }(I)/h_{ \varphi }(\mathcal {S})$ is a Grothendieck space, etc.

References [Enhancements On Off] (What's this?)

  • 1. T. Ando, Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 8 (3) (1960), 1-16. MR 23:A1228
  • 2. J.Bourgain, $\ell _{\infty }/c_{0}$ has no equivalent strictly convex norm, Proc. Amer. Math. Soc. 78 (1980), 225-226. MR 81h:46029
  • 3. H.H.Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. MR 24:A2220
  • 4. J. Diestel and J.J.Uhl, Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977. MR 56:12216
  • 5. L.Drewnowski and J.W.Roberts, On the primariness of the Banach space $\ell _{\infty }/c_{0}$, Proc. Amer. Math. Soc. 112 (1991), 949-957. MR 91j:46018
  • 6. G.A.Edgar, Measurability in Banach spaces II Indiana Univ. Math. J. 28 (1979), 559-579. MR 81d:28016
  • 7. G.Godini, Characterization of proximinal linear subspaces in normed linear spaces, Rev. Roumaine Math. Pures Appl. 18 (1973), 901-906. MR 48:2732
  • 8. A.Grothendieck, Sur les applications lineaire faiblement compacts d'espaces du type $C(K)$, Can. J. Math. 5 (1953), 129-173. MR 15:438b
  • 9. J.Lindenstrauss and J.Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 81c:46001
  • 10. I.E.Leonard and J.H.M.Whitfield, A classical Banach spaces: $\ell _{\infty }/c_{o}$, Rocky Mountain J. Math. 13 (1983), 531-539. MR 84j:46030
  • 11. H.E.Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, New York, 1974. MR 58:12308
  • 12. H.P.Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measures $\mu $, Acta Math. 124 (1970), 205-248. MR 41:2370
  • 13. M.Valdivia, Topic in Locally Convex Spaces, Mathematics Studies 67, North-Holland, 1982. MR 84i:46007
  • 14. V.S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. Ser. II 48 (1965), 161-228. MR 26:6342
  • 15. W. Wnuk, On the order-topological properties of the quotient space $L/L_{A}$, Studia Math. 79 (1984), 139-149. MR 86k:46013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B20

Retrieve articles in all journals with MSC (1991): 46B20

Additional Information

Antonio S. Granero
Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040-Madrid, Spain

Henryk Hudzik
Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University, Poznań, Poland
Email: hudzik@plpuam11.bitnet

Keywords: Orlicz spaces, quotient spaces
Received by editor(s): March 15, 1995
Received by editor(s) in revised form: June 13, 1995
Additional Notes: The first author was supported in part by DGICYT grant PB 94-0243. The paper was written while the second author visited the Universidad Complutense de Madrid.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society