Growth of graded noetherian rings

Authors:
Darin R. Stephenson and James J. Zhang

Journal:
Proc. Amer. Math. Soc. **125** (1997), 1593-1605

MSC (1991):
Primary 16P90, 16W50, 16E10

DOI:
https://doi.org/10.1090/S0002-9939-97-03752-0

MathSciNet review:
1371143

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every graded locally finite right noetherian algebra has sub-exponential growth. As a consequence, every noetherian algebra with exponential growth has no finite dimensional filtration which leads to a right (or left) noetherian associated graded algebra. We also prove that every connected graded right noetherian algebra with finite global dimension has finite GK-dimension. Using this, we can classify all connected graded noetherian algebras of global dimension two.

**[AS]**M. Artin and W. Schelter,*Graded Algebras of Dimension 3*, Adv. Math.**66**(1987), 172-216. MR**88k:16003****[ATV]**M. Artin, J. Tate and M. Van Den Bergh,*Modules over Regular Algebras of Dimension*3, Inventions Math., vol. 106, 1991, pp. (335-389). MR**93e:16055****[CF]**J. W. S. Cassels and A. Fröhlich, Eds.,*Algebraic Number Theory*, Proceedings of an Instructional Conference, Academic Press, 1967. MR**35:6500****[Di]**W. Dicks,*On the cohomology of one-relator associative algebras*, J. Alg.**97**(1985), 79-100. MR**87h:16041****[KL]**G. Krause and T. H. Lenagan,*Growth of algebras and Gelfand-Kirillov dimension*, Research Notes in Mathematics, Pitman Adv. Publ. Program, vol. 116 (1985). MR**86g:16001****[MR]**J. C. McConnell and J. C. Robson,*Non-Commutative Noetherian Rings*, Wiley-Interscience, Chichester, 1987. MR**89j:16023****[MS]**J. C. McConnell and J. T. Stafford,*Gelfand-Kirillov dimension and associated graded rings*, J. Algebra**125**(1989), 197-214. MR**90i:16002****[NV]**C. Nastasescu and F. Van Oystaeyen,*Graded Ring Theory*, North Holland, Amsterdam, 1982. MR**84i:16002****[RS]**R. Resco and L. Small,*Affine noetherian algebras and extensions of the base field*, Bull. London Math. Soc.**25**(1993), 549-552. MR**94m:16029****[S1]**M. K. Smith,*Growth of twisted Laurent extensions*, Duke Math. J.**49**(1982), 79-85. MR**83j:16034****[S2]**-,*Universal enveloping algebras with sub-exponential but not polynomially bounded growth*, Proc. Amer. Math. Soc.**60**(1976), 22-24. MR**54:7555****[SmZ]**S. P. Smith and J. J. Zhang,*Some non-noetherian regular graded rings*, in preparation.**[SZ]**J. T. Stafford and J. J. Zhang,*Homological properties of (graded) noetherian PI rings*, J. Algebra**168**(1994), 988-1026. MR**95h:16030****[St]**R. P. Stanley,*Generating Functions*(G.-C. Rota, ed.), Studies in Combinatorics, Vol. 17, MAA Studies in Math., Washington: MAA, Inc., 1978, pp. (100-141). MR**81i:05015****[Ste]**D. R. Stephenson,*Artin-Schelter regular algebras of global dimension three*, Ph.D. thesis, University of Michigan, UMI, 1994.**[W]**C. T. C. Wall,*Generators and relation for the Steenrod algebra*, Ann. Math.**72**(1960), 429-444. MR**22:7117****[Zh]**J. J. Zhang,*Connected graded Gorenstein algebras with enough normal elements*, J. Algebra, to appear.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16P90,
16W50,
16E10

Retrieve articles in all journals with MSC (1991): 16P90, 16W50, 16E10

Additional Information

**Darin R. Stephenson**

Affiliation:
Department of Mathematics-0112, University of California at San Diego, La Jolla, California 92093-0112

Email:
dstephen@math.ucsd.edu

**James J. Zhang**

Affiliation:
Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

Email:
zhang@math.washington.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03752-0

Keywords:
Sub-exponential growth,
GK-dimension,
graded ring,
global dimension

Received by editor(s):
December 5, 1995

Additional Notes:
The second author was supported by the NSF

Communicated by:
Lance W. Small

Article copyright:
© Copyright 1997
American Mathematical Society