Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Operators $\alpha $-commuting
with a compact operator


Author: Vasile Lauric
Journal: Proc. Amer. Math. Soc. 125 (1997), 2379-2384
MSC (1991): Primary 47A15, 47B35
DOI: https://doi.org/10.1090/S0002-9939-97-03965-8
MathSciNet review: 1402869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we update a question raised by Pearcy and Shields ('74) concerning the invariant subspace problem on Hilbert spaces.


References [Enhancements On Off] (What's this?)

  • 1. S. Brown, Connections between an operator and a compact operator that yield hyperinvariant subspaces, J. Operator Theory, 1 (1979),117-122. MR 80h:47005
  • 2. S. Brown, Lomonosov's theorem and essentially normal operators, New Zealand J. Math., 23 (1994), 11-18. MR 95g:47006
  • 3. B. Chevreau, W. S. Li, and C. Pearcy, A new S. Brown-Lomonosov type lemma, preprint, (1996).
  • 4. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc., 239 (1978), 1-31. MR 58:2420
  • 5. C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana J. Math, 29 (1980), 1-12. MR 82e:47038
  • 6. C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Funct. Anal. 36 (1980), 169-184. MR 81d:47020
  • 7. P. Duren, Extension of a result of Beurling on invariant subspaces, Trans. Amer. Math. Soc. 99 (1961), 320-324. MR 22:9851
  • 8. D. Hadwin, An operator still not satisfying Lomonosov's hypothesis, Proc. Amer. Math. Soc., 123 (1995), 3039-3041. MR 95m:47006
  • 9. D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, An operator not satisfying Lomonosov's hypothesis, J. Funct. Anal., 38 (1980), 410-415. MR 81m:47013
  • 10. H. Kim, R. Moore, and C. Pearcy, A variation of Lomonosov's theorem, J. Operator Theory, 2 (1979), 131-140. MR 81b:47007
  • 11. H. Kim, R. Moore, and C. Pearcy, A variation of Lomonosov's theorem, II, J. Operator Theory, 5 (1981), 283-287. MR 83a:47006
  • 12. H. Kim, C. Pearcy, and A. Shields, Rank-one commutators and hyperinvariant subspaces, Mich. Math. J., 22 (1975), 193-194. MR 52:11626
  • 13. H. Kim, C. Pearcy, and A. Shields, Sufficient conditions for rank-one commutators and hyperinvariant subspaces, Mich. Math. J., 23 (1976), 235-243. MR 57:3881
  • 14. V. Lomonosov, Invariant subspaces for operators commuting with compact operators, Funkcional Anal. i Prilozen, 7 (1973), 55-56 (Russian). MR 54:8319
  • 15. V. Lomonosov, An extension of Burnside's theorem to infinite-dimensional spaces, Israel J. Math., 75 (1991), 329-339. MR 93h:47007
  • 16. C. Pearcy and A. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Mathematical Surveys No.13, Amer. Math. Soc., (1974), 219-229. MR 50:8113
  • 17. H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, Berlin/ Heidelberg/New York, 1973. MR 51:3924
  • 18. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications, vol 23, 1959. MR 21:5029
  • 19. D. V. Yakubovich, Riemann surface models of Toeplitz operators, Operator Theory: Advances and Applications, 42 (1989), 305-419. MR 91g:47023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A15, 47B35

Retrieve articles in all journals with MSC (1991): 47A15, 47B35


Additional Information

Vasile Lauric
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
Email: lauric@math.tamu.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03965-8
Keywords: Toeplitz operators, $\alpha $-commuting, invariant subspaces
Received by editor(s): January 1, 2027
Received by editor(s) in revised form: January 1, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society