Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Semi-free actions of zero-dimensional
compact groups on Menger compacta


Author: Katsuro Sakai
Journal: Proc. Amer. Math. Soc. 125 (1997), 2809-2813
MSC (1991): Primary 54F15, 54H25, 54H15; Secondary 57S10, 22C05
DOI: https://doi.org/10.1090/S0002-9939-97-04031-8
MathSciNet review: 1415368
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu ^{n}$ be the $n$-dimensional universal Menger compactum, $X$ a $Z$-set in $\mu ^{n}$ and $G$ a metrizable zero-dimensional compact group with $e$ the unit. It is proved that there exists a semi-free $G$-action on $\mu ^{n}$ such that $X$ is the fixed point set of every $g \in G \smallsetminus \{e\}$. As a corollary, it follows that each compactum with $\dim \leqslant n$ can be embedded in $\mu ^{n}$ as the fixed point set of some semi-free $G$-action on $\mu ^{n}$.


References [Enhancements On Off] (What's this?)

  • [Be] M. Bestvina, Characterizing $k$-dimensional universal Menger compacta, Memoirs Amer. Math. Soc. (no.380) 71 (1988). MR 89g:54083
  • [En] R. Engelking, Dimension Theory, N.-H. Math. Library vol. 19, North-Holland Publ. Co., Amsterdam, 1978. MR 58:2753b
  • [Dr] A.N. Dranishnikov, On free actions of zero-dimensional compact groups, Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1989), 217-232 (Russian), English transl. in: Math. USSR Izvestiya. MR 90e:57065
  • [GHW] D.J. Garity, J.P. Henderson and D.G. Wright, Menger spaces and inverse limits, Pacific J. Math. 131 (1988), 249-259. MR 89d:54026
  • [Ko] Y. Kodama, On embeddings of spaces into ANR and shape, J. Math. Soc. Japan 27 (1975), 533-544. MR 53:3993
  • [Po] L.S. Pontryagin, Topological Groups, Gordon and Breach, New York, 1966. MR 34:1439
  • [Sa] K. Sakai, Free actions of zero-dimensional compact groups on Menger manifolds, Proc. Amer. Math. Soc. 122 (1994), 647-648. MR 95c:57057
  • [Wh] J.H.C. Whitehead, Simplicial spaces, nuclei, and $m$-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54F15, 54H25, 54H15, 57S10, 22C05

Retrieve articles in all journals with MSC (1991): 54F15, 54H25, 54H15, 57S10, 22C05


Additional Information

Katsuro Sakai
Affiliation: Institute of Mathematics, University of Tsukuba, Tsukuba-city 305, Japan
Email: sakaiktr@sakura.cc.tsukuba.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-97-04031-8
Keywords: The fixed point set, semi-free action, $0$-dimensional compact group, the $n$-dimensional universal Menger compactum
Received by editor(s): April 16, 1994
Received by editor(s) in revised form: April 28, 1996
Communicated by: James West
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society