Prescribing Gaussian curvature on

Author:
Sanxing Wu

Journal:
Proc. Amer. Math. Soc. **125** (1997), 3119-3123

MSC (1991):
Primary 58G30; Secondary 53C21

DOI:
https://doi.org/10.1090/S0002-9939-97-04150-6

MathSciNet review:
1423342

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a sufficient condition for a radially symmetric function which is positive somewhere to be a conformal curvature on . In particular, we show that every nonnegative radially symmetric continuous function on is a conformal curvature.

**1.**K. S. Cheng and J. T. Lin,*On the elliptic equations and*, Trans. Amer. Math. Soc.**304**(1987), 639-668. MR**88j:35076****2.**K. S. Cheng and W. M. Ni,*On the structure of the conformal Gaussian curvature equation on*, Duke Math. J.**62**(1991), 721-737. MR**92f:35061****3.**W. Y. Ding and W. M. Ni,*On the elliptic equation and related topics*, Duke Math. J.**52**(1985), 485-506. MR**86k:35040****4.**R. E. Edwards,*Functional analysis*, Holt, Rinehart and Winston, New York, 1965.**5.**D. Hulin and M. Troyanov,*Prescribing curvature on open surfaces*, Math. Ann.**293**(1992), 277-315. MR**93d:53047****6.**J. Kazdan and F. W. Warner,*Curvature Functions for Compact -manifolds*, Ann. Math.**99**(1974), 14-47. MR**49:7949****7.**M. Kalka and D. G. Yang,*On conformal deformation of nonpositive curvature on noncompact surfaces*, Duke Math. J.,**72**(1993), 405-430. MR**94i:53040****8.**-,*On nonpositive curvature functions on noncompact surfaces of finite topological type*, Indiana Univ. Math. J.**43**(1994), 775-804. MR**95j:53060****9.**R. C. McOwen,*On the equation and prescribing negative curvature on*, J. Math. Anal. Appl.**103**(1984), 365-370. MR**86c:58755****10.**-,*Conformal Metrics in with Prescribed Gaussian Curvature and Positive Total Curvature*, Indiana Univ. Math. J.**34**(1985), 97-104. MR**86h:53008****11.**W. M. Ni,*On the elliptic equation and conformal metrics with prescribed Gaussian curvature*, Invent. Math.**66**(1982), 343-352. MR**89g:58107****12.**-,*On the elliptic equation , its generalizations, and applications in geometry*, Indiana Univ. Math. J.**31**(1982), 495-529. MR**84e:35049****13.**D. H. Sattinger,*Conformal metrics in with prescribed Gaussian curvature*, Indiana Univ. Math. J.**22**(1972), 1-4. MR**46:4437**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58G30,
53C21

Retrieve articles in all journals with MSC (1991): 58G30, 53C21

Additional Information

**Sanxing Wu**

Affiliation:
Department of Applied Mathematics, 100083, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China

DOI:
https://doi.org/10.1090/S0002-9939-97-04150-6

Keywords:
Prescribing Gaussian curvature,
semilinear elliptic PDE,
integral equation

Received by editor(s):
May 10, 1996

Communicated by:
Peter Li

Article copyright:
© Copyright 1997
American Mathematical Society