Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A joint spectral characterization
of primeness for C$^{*}$-algebras


Authors: Raúl E. Curto and Carlos Hernández G.
Journal: Proc. Amer. Math. Soc. 125 (1997), 3299-3301
MSC (1991): Primary 46L05, 47A10, 47A13, 47C15, 47D25; Secondary 47A62, 18G35
DOI: https://doi.org/10.1090/S0002-9939-97-03948-8
MathSciNet review: 1403120
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a C$^{*}$-algebra $\mathcal {A}$ is prime iff $\sigma _T((L_a,R_b),\mathcal {A})\break =\sigma (a)\times \sigma (b)$ for every $a,b\in \mathcal {A},$ where $\sigma _T$ denotes Taylor spectrum and $L_a,R_b$ are the left and right multiplication operators acting on $\mathcal {A}.$


References [Enhancements On Off] (What's this?)

  • [Cu1] R. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of Some Recent Results in Operator Theory, J.B. Conway and B. Morrel, eds., vol. II, Pitman Res. Notes in Math. Ser. 192, Longman Publ. Co., London, 1988; pp. 25-90. MR 90d:47007
  • [Cu2] R. Curto, Spectral theory of elementary operators, Proceedings of the International Workshop on Elementary Operators and Applications, M. Mathieu, ed., World Scientific, 1992; pp. 3-52. MR 93i:47041
  • [CuF] R. Curto and L. Fialkow, The spectral picture of $(L_A,R_B),$ J. Funct. Anal. 71(1987), 371-392. MR 88c:47006
  • [Har] R. Harte, A problem of mixed interpolation, Math. Z. 143(1975), 149-153. MR 53:8933
  • [Ma1] M. Mathieu, Applications of ultraprime Banach algebras in the theory of elementary operators, Thesis, Univ. Tübingen, 1986.
  • [Ma2] M. Mathieu, Elementary operators on prime C$^{*}$-algebras, I, Math. Ann. 284(1989), 223-244. MR 90h:46092
  • [Ta1] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6(1970), 172-191. MR 42:3603
  • [Ta2] J.L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125(1970), 1-38. MR 42:6622

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L05, 47A10, 47A13, 47C15, 47D25, 47A62, 18G35

Retrieve articles in all journals with MSC (1991): 46L05, 47A10, 47A13, 47C15, 47D25, 47A62, 18G35


Additional Information

Raúl E. Curto
Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
Email: curto@math.uiowa.edu

Carlos Hernández G.
Affiliation: Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 Mexico, D.F., Mexico
Email: carlosh@servidor.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-97-03948-8
Keywords: Taylor spectrum, multiplication operators, prime C$^{*}$-algebras
Received by editor(s): December 6, 1995
Received by editor(s) in revised form: June 12, 1996
Communicated by: Palle E.T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society