Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Infinite Taylor interpolation

Authors: Leonhard Frerick and Jürgen Müller
Journal: Proc. Amer. Math. Soc. 125 (1997), 3331-3337
MSC (1991): Primary 30E05
MathSciNet review: 1403126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a region in $\mathbb C$, let $\alpha $ be a point in $G$, and let $\Lambda $ be an infinite set of nonnegative integers. We consider the question whether there exists a function which is holomorphic in $G$ and has prescribed derivatives of order $\nu $ at $\alpha $ for all $\nu \in \Lambda $.

References [Enhancements On Off] (What's this?)

  • 1. M. Dixon, J. Korevaar, Approximation by lacunary polynomials, Indag. Math., 39 (1977), 176-194. MR 56:15940
  • 2. N. Kalton, L. A. Rubel, Gap-interpolation theorems for entire functions, J. Reine Angew. Math, 316 (1980), 71-82. MR 83f:30023
  • 3. C. A. Berenstein, R. Gay, Complex analysis and special topics in harmonic analysis, Springer, New York, 1995. MR 96j:30001
  • 4. G. Köthe, Topological vector spaces, II, Springer-Verlag, New York, 1979. MR 81g:46001
  • 5. P. Koosis, The logarithmic integral, I, Cambridge University Press, Cambridge, 1988. MR 90a:30097
  • 6. P. Koosis, The logarithmic integral, II, Cambridge University Press, Cambridge, 1992. MR 94i:30027
  • 7. W. Rudin, Real and complex analysis, 3rd ed., McGraw - Hill, New York, 1987. MR 88k:00002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30E05

Retrieve articles in all journals with MSC (1991): 30E05

Additional Information

Leonhard Frerick
Affiliation: Bergische Universität Gesamthochschule Wuppertal, Fachbereich 7, Mathematik, 42097 Wuppertal, Germany

Jürgen Müller
Affiliation: Universität Trier, Fachbereich IV, Mathematik, 54286 Trier, Germany

Received by editor(s): March 1, 1996
Received by editor(s) in revised form: June 14, 1996
Communicated by: Theodore W. Gamelin
Article copyright: © Copyright 1997 American Mathematical Society