Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The geodesic flow generates a fast dynamo:
an elementary proof


Authors: C. Chicone and Y. Latushkin
Journal: Proc. Amer. Math. Soc. 125 (1997), 3391-3396
MSC (1991): Primary 76W05, 58F99, 58G25
DOI: https://doi.org/10.1090/S0002-9939-97-04187-7
MathSciNet review: 1443147
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give elementary and explicit arguments to show that the geodesic flow on the unit tangent bundle of a two dimensional Riemannian manifold with constant negative curvature provides an example of a ``fast'' dynamo for the magnetic kinematic dynamo equation.


References [Enhancements On Off] (What's this?)

  • 1. R. Abraham, J. Marsden. T. Ratiu, Manifolds, Tensor Analysis, and Applications, Appl. Math. Sci. v. 75, Springer-Verlag, 1983. MR 84h:58001
  • 2. V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts Math. 60, Springer-Verlag, 1978. MR 57:14033b
  • 3. V. I. Arnold, Ya. B. Zel$^\prime $dovich, A. A. Rasumaikin, and D. D. Sokolov, Magnetic field in a stationary flow with stretching in Riemannian space, Sov. Phys. JETP, 54 (6) (1981) 1083-1086.
  • 4. B. Bayly, Fast magnetic dynamos in chaotic flows, Phys. Rev. Lett. 57 (22) (1986) 2800.
  • 5. B. J. Bayly and S. Childress, Fast-dynamo action in unsteady flows and maps in three dimensions, Phys. Rev. Let. 59 (14) (1987) 1573-1576. MR 88h:76056
  • 6. J. Beem, C. Chicone, and P. Ehrlich, The geodesic flow and sectional curvature of pseudo-Riemannian manifolds, Geometriae Dedicata 12 (1982) 111-118. MR 83k:53036
  • 7. C. Chicone, The topology of stationary curl parallel solutions of Euler's equations, Israel J. Math., 39 (1981) 161-166. MR 82i:58055
  • 8. C. Chicone, Tangent bundle connections and the geodesic flow, Rocky Mountain J. Math. 11 (2) (1981) 305-317. MR 83b:58064
  • 9. C. Chicone, and P. Ehrlich, Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds, Manuscr. Math. 31 (1980) 297-316. MR 81g:53049
  • 10. C. Chicone, Y. Latushkin, and S. Montgomery-Smith, The spectrum of the kinematic dynamo operator for an ideally conducting fluid, Commun. Math. Phys. 173 (1995) 379-400. MR 96k:76118
  • 11. J.M. Finn, and E. Ott, Chaotic flows and magnetic dynamos, Phys. Rev. Lett. 60 (9) (1988) 760-763.
  • 12. L. Green, Geodesic Flows, Lecture Notes in Math., 200 (1971) 25-27.
  • 13. L. Green, When is an Anosov flow geodesic? Ergod. Theor. and Dynam. Syst. 12 (1992) 227-232. MR 93g:58111
  • 14. A.M. Soward, Fast dynamo actions in a steady flow, Journ. Fluid Mech. 180 (1987) 267-295.
  • 15. M. M. Vishik, Magnetic field generation by the motion of a highly conducting fluid, Geophys. Astrophys. Fluid Dynamics, 48 (1989) 151-167. MR 90k:76101
  • 16. M. M. Vishik, On a system of equations arising in magnetohydrodynamics, Soviet Math. Dokl., 29 (2) (1984) 372-376. MR 86d:76041

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 76W05, 58F99, 58G25

Retrieve articles in all journals with MSC (1991): 76W05, 58F99, 58G25


Additional Information

C. Chicone
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: carmen@chicone.math.missouri.edu

Y. Latushkin
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: yuri@math.missouri.edu

DOI: https://doi.org/10.1090/S0002-9939-97-04187-7
Keywords: Kinematic dynamo, geodesic flow
Received by editor(s): April 24, 1996
Additional Notes: The first author’s research was supported by the National Science Foundation under the grant DMS-9303767; the second author was supported by the National Science Foundation under the grant DMS-9400518 and by the SRF of the University of Missouri.
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society