Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The fully invariant subgroups
of local Warfield groups


Author: Steve T. Files
Journal: Proc. Amer. Math. Soc. 125 (1997), 3515-3518
MSC (1991): Primary 20K27, 20K21; Secondary 20K30
DOI: https://doi.org/10.1090/S0002-9939-97-03999-3
MathSciNet review: 1416084
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every fully invariant subgroup of a $p$-local Warfield abelian group is the direct sum of a Warfield group and an $S$-group. This solves a problem posed some time ago by R. B. Warfield, and finalizes recent work of M. Lane concerning the fully invariant subgroups of balanced projective groups.


References [Enhancements On Off] (What's this?)

  • 1. S. Files, On transitive mixed abelian groups, pp. 243-251 in Abelian Groups and Modules: Proceedings of the 1995 Colorado Springs Conference, Marcel Dekker, New York, 1996.
  • 2. L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973. MR 50:2362
  • 3. L. Fuchs, Abelian p-Groups and Mixed Groups, University of Montreal Press, 1980. MR 82f:20081
  • 4. P. Hill, C. Megibben, Axiom 3 modules, Trans. Amer. Math. Soc. 295 (1986), 715-734. MR 87j:20090
  • 5. R. Hunter, F. Richman, E. Walker, Warfield modules, Springer LNM 616 (1977), 87-123. MR 58:22041
  • 6. R. Hunter, F. Richman, E. Walker, Existence theorems for Warfield groups, Trans. Amer. Math. Soc. 235 (1978), 345-362. MR 57:12723
  • 7. I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1969. MR 38:2208
  • 8. M. Lane, Isotype subgroups of p-local balanced projective groups, Trans. Amer. Math. Soc. 301 (1987), 313-325. MR 88d:20084
  • 9. M. Lane, Fully invariant submodules of p-local balanced projective groups, Rocky Mt. J. Math. 18 (1988), 833-841. MR 90d:20099
  • 10. R. Stanton, Relative S-invariants, Proc. Amer. Math. Soc. 65 (1977), 221-224. MR 56:5521
  • 11. R. B. Warfield, Classification theorems for p-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 89-92. MR 45:378
  • 12. R. B. Warfield, Classification theory of abelian groups I: Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33-63. MR 54:10444
  • 13. R. B. Warfield, The structure of mixed abelian groups, Springer LNM 616 (1976), 1-38. MR 58:22342

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20K27, 20K21, 20K30

Retrieve articles in all journals with MSC (1991): 20K27, 20K21, 20K30


Additional Information

Steve T. Files
Email: sfiles@wesleyan.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03999-3
Received by editor(s): June 30, 1995
Received by editor(s) in revised form: July 18, 1996
Additional Notes: The author was supported by the Graduiertenkolleg of the University of Essen
Communicated by: Andreas R. Blass
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society