Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Homotopy invariance of Novikov-Shubin invariants and $L^2$ Betti numbers


Authors: Jonathan Block, Varghese Mathai and Shmuel Weinberger
Journal: Proc. Amer. Math. Soc. 125 (1997), 3757-3762
MSC (1991): Primary 58G11, 58G18, 58G25.
MathSciNet review: 1425112
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give short proofs of the Gromov-Shubin theorem on the homotopy invariance of the Novikov-Shubin invariants and of the Dodziuk theorem on the homotopy invariance of the $L^2$ Betti numbers of the universal covering of a closed manifold in this paper. We show that the homotopy invariance of these invariants is no more difficult to prove than the homotopy invariance of ordinary homology theory.


References [Enhancements On Off] (What's this?)

  • [A] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Soc. Math. France, Paris, 1976, pp. 43–72. Astérisque, No. 32-33. MR 0420729
  • [BT] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
  • [C] Joel M. Cohen, von Neumann dimension and the homology of covering spaces, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 133–142. MR 534828, 10.1093/qmath/30.2.133
  • [D] Jozef Dodziuk, de Rham-Hodge theory for 𝐿²-cohomology of infinite coverings, Topology 16 (1977), no. 2, 157–165. MR 0445560
  • [DI] Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR 641217
  • [E] A.V. Effremov, Combinatorial and analytic Novikov-Shubin invariants, preprint 1991.
  • [ES] D.V. Effremov and M.A. Shubin, Spectrum distribution function and variational principle for automorphic operators on hyperbolic space, Seminaire Ecole Polytechnique, Centre de Mathematiques. (1988-89) Expose VIII.
  • [GS] M. Gromov and M. A. Shubin, von Neumann spectra near zero, Geom. Funct. Anal. 1 (1991), no. 4, 375–404. MR 1132295, 10.1007/BF01895640
  • [RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744
  • [S] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • [W] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45, 243-327 (1939).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58G11, 58G18, 58G25.

Retrieve articles in all journals with MSC (1991): 58G11, 58G18, 58G25.


Additional Information

Jonathan Block
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania
Email: blockj@math.upenn.edu

Varghese Mathai
Affiliation: Department of Pure Mathematics, University of Adelaide, Adelaide 5005, Australia
Email: vmathai@maths.adelaide.edu.au

Shmuel Weinberger
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: shmuel@math.uchicago.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-97-04154-3
Keywords: $L^2$ Betti numbers, Novikov-Shubin invariants, homotopy invariance, von Neumann algebras.
Received by editor(s): July 30, 1996
Communicated by: Peter Li
Article copyright: © Copyright 1997 American Mathematical Society