Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy invariance of Novikov-Shubin invariants and $L^2$ Betti numbers


Authors: Jonathan Block, Varghese Mathai and Shmuel Weinberger
Journal: Proc. Amer. Math. Soc. 125 (1997), 3757-3762
MSC (1991): Primary 58G11, 58G18, 58G25.
DOI: https://doi.org/10.1090/S0002-9939-97-04154-3
MathSciNet review: 1425112
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give short proofs of the Gromov-Shubin theorem on the homotopy invariance of the Novikov-Shubin invariants and of the Dodziuk theorem on the homotopy invariance of the $L^2$ Betti numbers of the universal covering of a closed manifold in this paper. We show that the homotopy invariance of these invariants is no more difficult to prove than the homotopy invariance of ordinary homology theory.


References [Enhancements On Off] (What's this?)

  • [A] M. Atiyah Elliptic operators, discrete groups and Von Neumann algebras, Astérisque 32-33 (1976) 43-72. MR 54:8741
  • [BT] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82, Springer Verlag (1982). MR 83i:57016
  • [C] J.M. Cohen, Von Neumann dimension and the homology of covering spaces, Quart. J. Math. 30 (1979) 133-142. MR 81i:20060
  • [D] J. Dodziuk De Rham-Hodge theory for $L^2$ cohomology of infinite coverings, Topology 16 (1977) 157-165. MR 56:3898
  • [DI] J. Dixmier, Von Neumann algebras, North Holland Amsterdam 27 (1981). MR 83a:46004
  • [E] A.V. Effremov, Combinatorial and analytic Novikov-Shubin invariants, preprint 1991.
  • [ES] D.V. Effremov and M.A. Shubin, Spectrum distribution function and variational principle for automorphic operators on hyperbolic space, Seminaire Ecole Polytechnique, Centre de Mathematiques. (1988-89) Expose VIII.
  • [GS] M. Gromov and M. Shubin, Von Neumann spectra near zero, Geom. Func. Anal. 1 (1991) 375-404. MR 92i:58184
  • [RS] C. Rourke and B. Sanderson, Introduction to Piecewise-Linear Topology, Ergebnisse der Mathematik 69 Springer-Verlag (1972). MR 50:3236
  • [S] E.H. Spanier, Algebraic Topology, McGraw-Hill New York (1966). MR 35:1007
  • [W] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45, 243-327 (1939).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58G11, 58G18, 58G25.

Retrieve articles in all journals with MSC (1991): 58G11, 58G18, 58G25.


Additional Information

Jonathan Block
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania
Email: blockj@math.upenn.edu

Varghese Mathai
Affiliation: Department of Pure Mathematics, University of Adelaide, Adelaide 5005, Australia
Email: vmathai@maths.adelaide.edu.au

Shmuel Weinberger
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: shmuel@math.uchicago.edu

DOI: https://doi.org/10.1090/S0002-9939-97-04154-3
Keywords: $L^2$ Betti numbers, Novikov-Shubin invariants, homotopy invariance, von Neumann algebras.
Received by editor(s): July 30, 1996
Communicated by: Peter Li
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society