The Schrödinger operator

Authors:
Tian Lixin and Liu Zengrong

Journal:
Proc. Amer. Math. Soc. **126** (1998), 203-211

MSC (1991):
Primary 46C50, 47A20, 47B39, 47B44, 81Q05

MathSciNet review:
1415351

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the maximum dissipative extension of the Schrödinger operator, introduce the generalized indefinite metric space, obtain the representation of the maximum dissipative extension of the Schrödinger operator in the natural boundary space and make preparation for the further study of the longtime chaotic behavior of the infinite-dimensional dynamics system in the Schrödinger equation.

**1.**Yin Yan,*Attractors and dimensions for discretizations of a weakly damped Schrödinger equation and a sine-Gorden [Gordon] equation*, Nonlinear Anal.**20**(1993), no. 12, 1417–1452. MR**1225347**, 10.1016/0362-546X(93)90168-R**2.**A. Soffer and M. I. Weinstein,*Multichannel nonlinear scattering for nonintegrable equations*. II, J. Diff. Eq.**98**(1992), 376-390.**3.**Nakao Hayashi,*The initial value problem for the derivative nonlinear Schrödinger equation in the energy space*, Nonlinear Anal.**20**(1993), no. 7, 823–833. MR**1214746**, 10.1016/0362-546X(93)90071-Y**4.**Bernard Helffer,*Semi-classical analysis for the Schrödinger operator and applications*, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988. MR**960278****5.**Guo Qiang Wei and You Qiang Shen,*The generalized 𝑝-normal operators and 𝑝-hyponormal operators on Banach space*, Chinese Ann. Math. Ser. B**8**(1987), no. 1, 70–79. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 1, 137. MR**886751****6.**Heinz Langer,*Spectral functions of definitizable operators in Kreĭn spaces*, Functional analysis (Dubrovnik, 1981) Lecture Notes in Math., vol. 948, Springer, Berlin-New York, 1982, pp. 1–46. MR**672791****7.**L. Bonger,*Indefinite inner product spaces*, Springer-Verlag, New York, 1974.**8.**Peder A. Olsen,*Fractional integration, Morrey spaces and a Schrödinger equation*, Comm. Partial Differential Equations**20**(1995), no. 11-12, 2005–2055. MR**1361729**, 10.1080/03605309508821161**9.**M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili,*Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets*, Comm. Partial Differential Equations**20**(1995), no. 7-8, 1241–1273. MR**1335750**, 10.1080/03605309508821131**10.**G. Lumer and R. S. Phillips,*Dissipative operators in a Banach space*, Pacific J. Math.**11**(1961), 679–698. MR**0132403****11.**Michael G. Crandall and Ralph S. Phillips,*On the extension problem for dissipative operators*, J. Functional Analysis**2**(1968), 147–176. MR**0231220**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46C50,
47A20,
47B39,
47B44,
81Q05

Retrieve articles in all journals with MSC (1991): 46C50, 47A20, 47B39, 47B44, 81Q05

Additional Information

**Tian Lixin**

Affiliation:
Department of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212013, People’s Republic of China

Email:
lgj@jsust.edu.cn

**Liu Zengrong**

Affiliation:
Department of Mathematics, Suzhou University, Suzhou, Jiangsu, 215006, People’s Republic of China

DOI:
https://doi.org/10.1090/S0002-9939-98-04014-3

Received by editor(s):
February 28, 1996

Received by editor(s) in revised form:
July 16, 1996

Additional Notes:
Research supported in part by the National Science Foundation of China and Science-technology Foundation of the Ministry of Machine-building Industry of China

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1998
American Mathematical Society