Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-analytic hypoellipticity
in the presence of symplecticity


Authors: Nicholas Hanges and A. Alexandrou Himonas
Journal: Proc. Amer. Math. Soc. 126 (1998), 405-409
MSC (1991): Primary 35H05
DOI: https://doi.org/10.1090/S0002-9939-98-04115-X
MathSciNet review: 1422872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here we construct non-analytic solutions to a class of hypoelliptic operators with symplectic characteristic set and in the form of a sum of squares of real analytic vector fields.


References [Enhancements On Off] (What's this?)

  • [BG] M.S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. AMS 78 78 (1972), 483-486. MR 45:5567
  • [C1] M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, Contemporary Mathematics, AMS 137 (1992), 155-167. MR 93j:35048
  • [C2] M. Christ, A necessary condition for analytic hypoellipticity, Mathematical Research Letters 1 (1994), 241-248. MR 94m:35068
  • [C3] M. Christ, On local and global analytic and Gevrey hypoellipticity, Journees "Equations aux derivees partialles", Saint-Jean-de-Monts (Mai-Juin 1995). MR 96h:35029
  • [DZ] M. Derridj and C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. pures et appl. 52 (1973), 65-80. MR 52:11300
  • [GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et sommes de carres de champs de vecteurs, Duke Math J. 52 (1985), 35-51. MR 86h:58136
  • [HH1] N. Hanges and A.A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (8,9) (1991), 1503-1511. MR 92i:35031
  • [HH2] N. Hanges and A. A. Himonas, Singular solutions for a class of Grusin type operators, Proceedings of AMS 124, No. 5 (1996), 1549-1557. MR 96g:35035
  • [He] B. Helffer, Conditions necessaires d'hypoanalyticite pour des operateurs invariants a gauche homogenes sur un groupe nilpotent gradue, Journal of Differential Equations 44 (1982), 460-481. MR 84c:35026
  • [Ho] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 174-171. MR 36:5526
  • [K] J.J. Kohn, Pseudo-differential operators and hypoellipticity, Proceedings of symposia in pure mathematics XXIII (1973), 61-70. MR 49:3356
  • [M] G. Metivier, Une class d'operateurs non hypoelliptiques analytiques, Indiana Univ. Math J. 29 (1980), 823-860. MR 82a:35029
  • [OR1] O. A. Oleinik and E. V. Radkevic, The analyticity of the solutions of linear differential equations and systems, Dokladi 207, No 4 (1972), 1614-1618. MR 48:2544
  • [OR2] O. A. Oleinik and E. V. Radkevic, Second order equations with nonnegative characteristic form, AMS and Plenum Press, 1973. MR 56:16112
  • [PR] Pham The Lai and D. Robert, Sur un problem aux valeurs propres non lineaire, Israel J. of Math 36 (1980), 169-186. MR 83b:35132
  • [RS] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math 137 (1977), 247-320. MR 55:9171
  • [T] D. S. Tartakoff, On the local real analyticity of solutions to $\square _{b}$ and the $\bar {\partial }$-Neumann problem, Acta Math. 145 (1980), 117-204. MR 81k:35033
  • [Tr] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to $\bar \partial $-Neumann problem, Comm. in P.D.E. 3 (1978), 475-642. MR 58:11867

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35H05

Retrieve articles in all journals with MSC (1991): 35H05


Additional Information

Nicholas Hanges
Affiliation: Lehman College, CUNY, Bronx, New York 10468
Email: nwhlc@cunyvm.cuny.edu

A. Alexandrou Himonas
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Address at time of publication: Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720
Email: alex.a.himonas.1@nd.edu, himonas@msri.org

DOI: https://doi.org/10.1090/S0002-9939-98-04115-X
Keywords: Analytic hypoellipticity, sum of squares of vector fields, finite type, characteristic set, symplectic, eigenvalue, eigenfunction
Received by editor(s): July 22, 1996
Additional Notes: The first author was partially supported by NSF Grant DMS 91-04569, and the second author by NSF Grant DMS 91-01161
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society