Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the interior derivative blow-up
for the curvature evolution
of capillary surfaces


Authors: Keisui Asai and Naoyuki Ishimura
Journal: Proc. Amer. Math. Soc. 126 (1998), 835-840
MSC (1991): Primary 35B40, 35K55, 58G11
MathSciNet review: 1422841
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give examples of the interior derivative blow-up solutions for the curvature evolution of capillary surfaces over a bounded domain in $\mathbf{R}^{N}$.


References [Enhancements On Off] (What's this?)

  • 1. C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems, Nonlinear Anal. 26 (1996), no. 12, 1889–1903. MR 1386121, 10.1016/0362-546X(95)00058-4
  • 2. K.Asai, Interior derivative blow-up for the curvature evolution of capillary surfaces, Thesis, University of Tokyo (1996).
  • 3. Tomasz Dłotko, Examples of parabolic problems with blowing-up derivatives, J. Math. Anal. Appl. 154 (1991), no. 1, 226–237. MR 1087970, 10.1016/0022-247X(91)90082-B
  • 4. Marek Fila and Gary M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations 7 (1994), no. 3-4, 811–821. MR 1270105
  • 5. Robert Finn, Equilibrium capillary surfaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. MR 816345
  • 6. Yoshikazu Giga, Interior derivative blow-up for quasilinear parabolic equations, Discrete Contin. Dynam. Systems 1 (1995), no. 3, 449–461. MR 1355884, 10.3934/dcds.1995.1.449
  • 7. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 8. Naoyuki Ishimura, Existence of symmetric capillary surfaces via curvature evolution, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), no. 2, 419–427. MR 1255049
  • 9. N.Kutev, Global solvability and boundary gradient blow up for one dimensional parabolic equations, in ``Progress in Partial Differential Equations : Elliptic and Parabolic Problems," Eds. C.Bandle, J.Bemelmans, M.Chipot and M.Grüter, Longman, 1992, pp. 176-181. CMP 93:04
  • 10. N. Kutev, Gradient blow-ups and global solvability after the blow-up time for nonlinear parabolic equations, Evolution equations, control theory, and biomathematics (Han sur Lesse, 1991), Lecture Notes in Pure and Appl. Math., vol. 155, Dekker, New York, 1994, pp. 301–306. MR 1254908
  • 11. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496. MR 0282058
  • 12. Andrew Stone, Evolutionary existence proofs for the pendant drop and 𝑛-dimensional catenary problems, Pacific J. Math. 164 (1994), no. 1, 147–178. MR 1267505

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B40, 35K55, 58G11

Retrieve articles in all journals with MSC (1991): 35B40, 35K55, 58G11


Additional Information

Keisui Asai
Affiliation: System Laboratory, Fujitsu Cooperation, Mihama, Chiba 261, Japan
Email: keisui@tokyo.se.fujitsu.co.jp

Naoyuki Ishimura
Affiliation: Department of Mathematics, Hitotsubashi University, Kunitachi, Tokyo 186, Japan
Email: ishimura@math.hit-u.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04084-2
Keywords: Derivative blow-up, curvature evolution, capillary surfaces
Received by editor(s): March 28, 1996
Received by editor(s) in revised form: September 10, 1996
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1998 American Mathematical Society