Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hardy's theorem
for the $n$-dimensional Euclidean motion group

Author: M. Sundari
Journal: Proc. Amer. Math. Soc. 126 (1998), 1199-1204
MSC (1991): Primary 22Exx; Secondary 22E30, 43A80
MathSciNet review: 1423336
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An uncertainty principle, due to Hardy, for Fourier transform pairs on $\Bbb R$ says that if the function $f$ is ``very rapidly decreasing'', then the Fourier transform cannot also be ``very rapidly decreasing'' unless $f$ is identically zero. In this paper we state and prove an analogue of Hardy's theorem for the $n$-dimensional Euclidean motion group.

References [Enhancements On Off] (What's this?)

  • 1. Michael Cowling and John F. Price, Generalisations of Heisenberg’s inequality, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 443–449. MR 729369, 10.1007/BFb0069174
  • 2. H. Dym and H. P. McKean, Fourier series and integrals, Academic Press, New York-London, 1972. Probability and Mathematical Statistics, No. 14. MR 0442564
  • 3. Folland G B, Abstract harmonic analysis, Unpublished lecture notes.
  • 4. K. I. Gross and R. A. Kunze, Fourier decompositions of certain representations, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Dekker, New York, 1972, pp. 119–139. Pure and Appl. Math., Vol. 8. MR 0427541
  • 5. Lars Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), no. 2, 237–240. MR 1150375, 10.1007/BF02384339
  • 6. Pati V, Sitaram A, Sundari M and Thangavelu S, An uncertainty principle for eigenfunction expansions, J. Fourier Anal. and Appl., 2(1996). CMP 97:02
  • 7. Sitaram A and Sundari M, An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math. 177 (1997), 187-200. CMP 97:11
  • 8. A. Sitaram, M. Sundari, and S. Thangavelu, Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 2, 135–151. MR 1350473, 10.1007/BF02880360
  • 9. Mitsuo Sugiura, Unitary representations and harmonic analysis, Kodansha Ltd., Tokyo; Halstead Press [John Wiley & Sons], New York-London-Sydney, 1975. An introduction. MR 0498995
  • 10. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 3rd ed., Chelsea Publishing Co., New York, 1986. MR 942661

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22Exx, 22E30, 43A80

Retrieve articles in all journals with MSC (1991): 22Exx, 22E30, 43A80

Additional Information

M. Sundari
Affiliation: Statistics and Mathematics Division, Indian Statistical Institute, 8th Mile, Mysore Road, R V College Post Office, Bangalore - 560 059, India

Keywords: Uncertainty principle, Fourier transform pairs, very rapidly decreasing, Euclidean motion group
Received by editor(s): April 4, 1995
Received by editor(s) in revised form: September 3, 1996
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1998 American Mathematical Society